Metamath Proof Explorer


Theorem mat2pmatvalel

Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses mat2pmatfval.t
|- T = ( N matToPolyMat R )
mat2pmatfval.a
|- A = ( N Mat R )
mat2pmatfval.b
|- B = ( Base ` A )
mat2pmatfval.p
|- P = ( Poly1 ` R )
mat2pmatfval.s
|- S = ( algSc ` P )
Assertion mat2pmatvalel
|- ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ ( X e. N /\ Y e. N ) ) -> ( X ( T ` M ) Y ) = ( S ` ( X M Y ) ) )

Proof

Step Hyp Ref Expression
1 mat2pmatfval.t
 |-  T = ( N matToPolyMat R )
2 mat2pmatfval.a
 |-  A = ( N Mat R )
3 mat2pmatfval.b
 |-  B = ( Base ` A )
4 mat2pmatfval.p
 |-  P = ( Poly1 ` R )
5 mat2pmatfval.s
 |-  S = ( algSc ` P )
6 1 2 3 4 5 mat2pmatval
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( T ` M ) = ( x e. N , y e. N |-> ( S ` ( x M y ) ) ) )
7 6 adantr
 |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ ( X e. N /\ Y e. N ) ) -> ( T ` M ) = ( x e. N , y e. N |-> ( S ` ( x M y ) ) ) )
8 oveq12
 |-  ( ( x = X /\ y = Y ) -> ( x M y ) = ( X M Y ) )
9 8 fveq2d
 |-  ( ( x = X /\ y = Y ) -> ( S ` ( x M y ) ) = ( S ` ( X M Y ) ) )
10 9 adantl
 |-  ( ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ ( X e. N /\ Y e. N ) ) /\ ( x = X /\ y = Y ) ) -> ( S ` ( x M y ) ) = ( S ` ( X M Y ) ) )
11 simprl
 |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ ( X e. N /\ Y e. N ) ) -> X e. N )
12 simprr
 |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ ( X e. N /\ Y e. N ) ) -> Y e. N )
13 fvexd
 |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ ( X e. N /\ Y e. N ) ) -> ( S ` ( X M Y ) ) e. _V )
14 7 10 11 12 13 ovmpod
 |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ ( X e. N /\ Y e. N ) ) -> ( X ( T ` M ) Y ) = ( S ` ( X M Y ) ) )