Step |
Hyp |
Ref |
Expression |
1 |
|
matbas2.a |
|- A = ( N Mat R ) |
2 |
|
matbas2.k |
|- K = ( Base ` R ) |
3 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
4 |
3
|
anidms |
|- ( N e. Fin -> ( N X. N ) e. Fin ) |
5 |
4
|
anim1ci |
|- ( ( N e. Fin /\ R e. V ) -> ( R e. V /\ ( N X. N ) e. Fin ) ) |
6 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
7 |
6 2
|
frlmfibas |
|- ( ( R e. V /\ ( N X. N ) e. Fin ) -> ( K ^m ( N X. N ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
8 |
5 7
|
syl |
|- ( ( N e. Fin /\ R e. V ) -> ( K ^m ( N X. N ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
9 |
1 6
|
matbas |
|- ( ( N e. Fin /\ R e. V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
10 |
8 9
|
eqtrd |
|- ( ( N e. Fin /\ R e. V ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |