Metamath Proof Explorer


Theorem matbas2i

Description: A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015)

Ref Expression
Hypotheses matbas2.a
|- A = ( N Mat R )
matbas2.k
|- K = ( Base ` R )
matbas2i.b
|- B = ( Base ` A )
Assertion matbas2i
|- ( M e. B -> M e. ( K ^m ( N X. N ) ) )

Proof

Step Hyp Ref Expression
1 matbas2.a
 |-  A = ( N Mat R )
2 matbas2.k
 |-  K = ( Base ` R )
3 matbas2i.b
 |-  B = ( Base ` A )
4 id
 |-  ( M e. B -> M e. B )
5 4 3 eleqtrdi
 |-  ( M e. B -> M e. ( Base ` A ) )
6 1 3 matrcl
 |-  ( M e. B -> ( N e. Fin /\ R e. _V ) )
7 1 2 matbas2
 |-  ( ( N e. Fin /\ R e. _V ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) )
8 6 7 syl
 |-  ( M e. B -> ( K ^m ( N X. N ) ) = ( Base ` A ) )
9 5 8 eleqtrrd
 |-  ( M e. B -> M e. ( K ^m ( N X. N ) ) )