Metamath Proof Explorer


Theorem matcpmric

Description: The ring of matrices over a commutative ring is isomorphic to the ring of scalar matrices over the same ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypotheses matcpmric.a
|- A = ( N Mat R )
matcpmric.p
|- P = ( Poly1 ` R )
matcpmric.c
|- C = ( N Mat P )
matcpmric.s
|- S = ( N ConstPolyMat R )
matcpmric.u
|- U = ( C |`s S )
Assertion matcpmric
|- ( ( N e. Fin /\ R e. CRing ) -> A ~=r U )

Proof

Step Hyp Ref Expression
1 matcpmric.a
 |-  A = ( N Mat R )
2 matcpmric.p
 |-  P = ( Poly1 ` R )
3 matcpmric.c
 |-  C = ( N Mat P )
4 matcpmric.s
 |-  S = ( N ConstPolyMat R )
5 matcpmric.u
 |-  U = ( C |`s S )
6 eqid
 |-  ( N matToPolyMat R ) = ( N matToPolyMat R )
7 eqid
 |-  ( Base ` A ) = ( Base ` A )
8 4 6 1 7 2 3 5 m2cpmrngiso
 |-  ( ( N e. Fin /\ R e. CRing ) -> ( N matToPolyMat R ) e. ( A RingIso U ) )
9 8 ne0d
 |-  ( ( N e. Fin /\ R e. CRing ) -> ( A RingIso U ) =/= (/) )
10 brric
 |-  ( A ~=r U <-> ( A RingIso U ) =/= (/) )
11 9 10 sylibr
 |-  ( ( N e. Fin /\ R e. CRing ) -> A ~=r U )