Metamath Proof Explorer


Theorem matgrp

Description: The matrix ring is a group. (Contributed by AV, 21-Dec-2019)

Ref Expression
Hypothesis matlmod.a
|- A = ( N Mat R )
Assertion matgrp
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Grp )

Proof

Step Hyp Ref Expression
1 matlmod.a
 |-  A = ( N Mat R )
2 1 matlmod
 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. LMod )
3 lmodgrp
 |-  ( A e. LMod -> A e. Grp )
4 2 3 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Grp )