| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matgsum.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matgsum.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | matgsum.z |  |-  .0. = ( 0g ` A ) | 
						
							| 4 |  | matgsum.i |  |-  ( ph -> N e. Fin ) | 
						
							| 5 |  | matgsum.j |  |-  ( ph -> J e. W ) | 
						
							| 6 |  | matgsum.r |  |-  ( ph -> R e. Ring ) | 
						
							| 7 |  | matgsum.f |  |-  ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. B ) | 
						
							| 8 |  | matgsum.w |  |-  ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) finSupp .0. ) | 
						
							| 9 | 5 | mptexd |  |-  ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) e. _V ) | 
						
							| 10 | 1 | ovexi |  |-  A e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ph -> A e. _V ) | 
						
							| 12 |  | ovexd |  |-  ( ph -> ( R freeLMod ( N X. N ) ) e. _V ) | 
						
							| 13 |  | eqid |  |-  ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) | 
						
							| 14 | 1 13 | matbas |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) | 
						
							| 15 | 4 6 14 | syl2anc |  |-  ( ph -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) | 
						
							| 16 | 15 | eqcomd |  |-  ( ph -> ( Base ` A ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) | 
						
							| 17 | 1 13 | matplusg |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) | 
						
							| 18 | 4 6 17 | syl2anc |  |-  ( ph -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ph -> ( +g ` A ) = ( +g ` ( R freeLMod ( N X. N ) ) ) ) | 
						
							| 20 | 9 11 12 16 19 | gsumpropd |  |-  ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) ) | 
						
							| 21 |  | mpompts |  |-  ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) | 
						
							| 22 | 21 | a1i |  |-  ( ph -> ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) | 
						
							| 23 | 22 | mpteq2dv |  |-  ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) = ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) | 
						
							| 25 |  | eqid |  |-  ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) | 
						
							| 27 |  | xpfi |  |-  ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) | 
						
							| 28 | 4 4 27 | syl2anc |  |-  ( ph -> ( N X. N ) e. Fin ) | 
						
							| 29 | 7 2 | eleqtrdi |  |-  ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. ( Base ` A ) ) | 
						
							| 30 | 21 | eqcomi |  |-  ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) | 
						
							| 31 | 30 | a1i |  |-  ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) ) | 
						
							| 32 | 4 6 | jca |  |-  ( ph -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ y e. J ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 34 | 33 14 | syl |  |-  ( ( ph /\ y e. J ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) | 
						
							| 35 | 29 31 34 | 3eltr4d |  |-  ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) | 
						
							| 36 | 30 | mpteq2i |  |-  ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = ( y e. J |-> ( i e. N , j e. N |-> U ) ) | 
						
							| 37 | 3 | eqcomi |  |-  ( 0g ` A ) = .0. | 
						
							| 38 | 8 36 37 | 3brtr4g |  |-  ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` A ) ) | 
						
							| 39 | 1 13 | mat0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) | 
						
							| 40 | 4 6 39 | syl2anc |  |-  ( ph -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) | 
						
							| 41 | 38 40 | breqtrrd |  |-  ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` ( R freeLMod ( N X. N ) ) ) ) | 
						
							| 42 | 13 25 26 28 5 6 35 41 | frlmgsum |  |-  ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) | 
						
							| 43 | 24 42 | eqtrd |  |-  ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) | 
						
							| 44 |  | fvex |  |-  ( 2nd ` z ) e. _V | 
						
							| 45 |  | csbov2g |  |-  ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) | 
						
							| 46 | 44 45 | ax-mp |  |-  [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) | 
						
							| 47 | 46 | csbeq2i |  |-  [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) | 
						
							| 48 |  | fvex |  |-  ( 1st ` z ) e. _V | 
						
							| 49 |  | csbov2g |  |-  ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) | 
						
							| 50 | 48 49 | ax-mp |  |-  [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) | 
						
							| 51 |  | csbmpt2 |  |-  ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) ) | 
						
							| 52 | 44 51 | ax-mp |  |-  [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) | 
						
							| 53 | 52 | csbeq2i |  |-  [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) | 
						
							| 54 |  | csbmpt2 |  |-  ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) | 
						
							| 55 | 48 54 | ax-mp |  |-  [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) | 
						
							| 56 | 53 55 | eqtri |  |-  [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) | 
						
							| 57 | 56 | oveq2i |  |-  ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) | 
						
							| 58 | 47 50 57 | 3eqtrri |  |-  ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) | 
						
							| 59 | 58 | mpteq2i |  |-  ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) | 
						
							| 60 |  | mpompts |  |-  ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) | 
						
							| 61 | 59 60 | eqtr4i |  |-  ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) | 
						
							| 62 | 61 | a1i |  |-  ( ph -> ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) | 
						
							| 63 | 20 43 62 | 3eqtrd |  |-  ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |