| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matinv.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matinv.j |  |-  J = ( N maAdju R ) | 
						
							| 3 |  | matinv.d |  |-  D = ( N maDet R ) | 
						
							| 4 |  | matinv.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | matinv.u |  |-  U = ( Unit ` A ) | 
						
							| 6 |  | matinv.v |  |-  V = ( Unit ` R ) | 
						
							| 7 |  | matinv.h |  |-  H = ( invr ` R ) | 
						
							| 8 |  | matinv.i |  |-  I = ( invr ` A ) | 
						
							| 9 |  | matinv.t |  |-  .xb = ( .s ` A ) | 
						
							| 10 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 12 | 1 4 | matrcl |  |-  ( M e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 13 | 12 | simpld |  |-  ( M e. B -> N e. Fin ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> N e. Fin ) | 
						
							| 15 |  | simp1 |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> R e. CRing ) | 
						
							| 16 | 1 | matassa |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. AssAlg ) | 
						
							| 17 | 14 15 16 | syl2anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> A e. AssAlg ) | 
						
							| 18 |  | assaring |  |-  ( A e. AssAlg -> A e. Ring ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> A e. Ring ) | 
						
							| 20 |  | simp2 |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> M e. B ) | 
						
							| 21 |  | assalmod |  |-  ( A e. AssAlg -> A e. LMod ) | 
						
							| 22 | 17 21 | syl |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> A e. LMod ) | 
						
							| 23 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> R e. Ring ) | 
						
							| 25 |  | simp3 |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( D ` M ) e. V ) | 
						
							| 26 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 27 | 6 7 26 | ringinvcl |  |-  ( ( R e. Ring /\ ( D ` M ) e. V ) -> ( H ` ( D ` M ) ) e. ( Base ` R ) ) | 
						
							| 28 | 24 25 27 | syl2anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( H ` ( D ` M ) ) e. ( Base ` R ) ) | 
						
							| 29 | 1 | matsca2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` A ) ) | 
						
							| 30 | 14 15 29 | syl2anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> R = ( Scalar ` A ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) | 
						
							| 32 | 28 31 | eleqtrd |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) ) | 
						
							| 33 | 1 2 4 | maduf |  |-  ( R e. CRing -> J : B --> B ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> J : B --> B ) | 
						
							| 35 | 34 20 | ffvelcdmd |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( J ` M ) e. B ) | 
						
							| 36 |  | eqid |  |-  ( Scalar ` A ) = ( Scalar ` A ) | 
						
							| 37 |  | eqid |  |-  ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) | 
						
							| 38 | 4 36 9 37 | lmodvscl |  |-  ( ( A e. LMod /\ ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ ( J ` M ) e. B ) -> ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) e. B ) | 
						
							| 39 | 22 32 35 38 | syl3anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) e. B ) | 
						
							| 40 | 4 36 37 9 10 | assaassr |  |-  ( ( A e. AssAlg /\ ( ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ M e. B /\ ( J ` M ) e. B ) ) -> ( M ( .r ` A ) ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) = ( ( H ` ( D ` M ) ) .xb ( M ( .r ` A ) ( J ` M ) ) ) ) | 
						
							| 41 | 17 32 20 35 40 | syl13anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M ( .r ` A ) ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) = ( ( H ` ( D ` M ) ) .xb ( M ( .r ` A ) ( J ` M ) ) ) ) | 
						
							| 42 | 1 4 2 3 11 10 9 | madurid |  |-  ( ( M e. B /\ R e. CRing ) -> ( M ( .r ` A ) ( J ` M ) ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) | 
						
							| 43 | 20 15 42 | syl2anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M ( .r ` A ) ( J ` M ) ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( M ( .r ` A ) ( J ` M ) ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) | 
						
							| 45 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 46 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 47 | 6 7 45 46 | unitlinv |  |-  ( ( R e. Ring /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` R ) ( D ` M ) ) = ( 1r ` R ) ) | 
						
							| 48 | 24 25 47 | syl2anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` R ) ( D ` M ) ) = ( 1r ` R ) ) | 
						
							| 49 | 30 | fveq2d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( .r ` R ) = ( .r ` ( Scalar ` A ) ) ) | 
						
							| 50 | 49 | oveqd |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` R ) ( D ` M ) ) = ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) ) | 
						
							| 51 | 30 | fveq2d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( 1r ` R ) = ( 1r ` ( Scalar ` A ) ) ) | 
						
							| 52 | 48 50 51 | 3eqtr3d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) = ( 1r ` ( Scalar ` A ) ) ) | 
						
							| 53 | 52 | oveq1d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) .xb ( 1r ` A ) ) = ( ( 1r ` ( Scalar ` A ) ) .xb ( 1r ` A ) ) ) | 
						
							| 54 | 26 6 | unitcl |  |-  ( ( D ` M ) e. V -> ( D ` M ) e. ( Base ` R ) ) | 
						
							| 55 | 54 | 3ad2ant3 |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( D ` M ) e. ( Base ` R ) ) | 
						
							| 56 | 55 31 | eleqtrd |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( D ` M ) e. ( Base ` ( Scalar ` A ) ) ) | 
						
							| 57 | 4 11 | ringidcl |  |-  ( A e. Ring -> ( 1r ` A ) e. B ) | 
						
							| 58 | 19 57 | syl |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( 1r ` A ) e. B ) | 
						
							| 59 |  | eqid |  |-  ( .r ` ( Scalar ` A ) ) = ( .r ` ( Scalar ` A ) ) | 
						
							| 60 | 4 36 9 37 59 | lmodvsass |  |-  ( ( A e. LMod /\ ( ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ ( D ` M ) e. ( Base ` ( Scalar ` A ) ) /\ ( 1r ` A ) e. B ) ) -> ( ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) .xb ( 1r ` A ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) | 
						
							| 61 | 22 32 56 58 60 | syl13anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) .xb ( 1r ` A ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) | 
						
							| 62 |  | eqid |  |-  ( 1r ` ( Scalar ` A ) ) = ( 1r ` ( Scalar ` A ) ) | 
						
							| 63 | 4 36 9 62 | lmodvs1 |  |-  ( ( A e. LMod /\ ( 1r ` A ) e. B ) -> ( ( 1r ` ( Scalar ` A ) ) .xb ( 1r ` A ) ) = ( 1r ` A ) ) | 
						
							| 64 | 22 58 63 | syl2anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( 1r ` ( Scalar ` A ) ) .xb ( 1r ` A ) ) = ( 1r ` A ) ) | 
						
							| 65 | 53 61 64 | 3eqtr3d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) = ( 1r ` A ) ) | 
						
							| 66 | 41 44 65 | 3eqtrd |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M ( .r ` A ) ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) = ( 1r ` A ) ) | 
						
							| 67 | 4 36 37 9 10 | assaass |  |-  ( ( A e. AssAlg /\ ( ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ ( J ` M ) e. B /\ M e. B ) ) -> ( ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ( .r ` A ) M ) = ( ( H ` ( D ` M ) ) .xb ( ( J ` M ) ( .r ` A ) M ) ) ) | 
						
							| 68 | 17 32 35 20 67 | syl13anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ( .r ` A ) M ) = ( ( H ` ( D ` M ) ) .xb ( ( J ` M ) ( .r ` A ) M ) ) ) | 
						
							| 69 | 1 4 2 3 11 10 9 | madulid |  |-  ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) ( .r ` A ) M ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) | 
						
							| 70 | 20 15 69 | syl2anc |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( J ` M ) ( .r ` A ) M ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( ( J ` M ) ( .r ` A ) M ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) | 
						
							| 72 | 68 71 65 | 3eqtrd |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ( .r ` A ) M ) = ( 1r ` A ) ) | 
						
							| 73 | 4 10 11 5 8 19 20 39 66 72 | invrvald |  |-  ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M e. U /\ ( I ` M ) = ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) ) |