Step |
Hyp |
Ref |
Expression |
1 |
|
matinv.a |
|- A = ( N Mat R ) |
2 |
|
matinv.j |
|- J = ( N maAdju R ) |
3 |
|
matinv.d |
|- D = ( N maDet R ) |
4 |
|
matinv.b |
|- B = ( Base ` A ) |
5 |
|
matinv.u |
|- U = ( Unit ` A ) |
6 |
|
matinv.v |
|- V = ( Unit ` R ) |
7 |
|
matinv.h |
|- H = ( invr ` R ) |
8 |
|
matinv.i |
|- I = ( invr ` A ) |
9 |
|
matinv.t |
|- .xb = ( .s ` A ) |
10 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
11 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
12 |
1 4
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
13 |
12
|
simpld |
|- ( M e. B -> N e. Fin ) |
14 |
13
|
3ad2ant2 |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> N e. Fin ) |
15 |
|
simp1 |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> R e. CRing ) |
16 |
1
|
matassa |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. AssAlg ) |
17 |
14 15 16
|
syl2anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> A e. AssAlg ) |
18 |
|
assaring |
|- ( A e. AssAlg -> A e. Ring ) |
19 |
17 18
|
syl |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> A e. Ring ) |
20 |
|
simp2 |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> M e. B ) |
21 |
|
assalmod |
|- ( A e. AssAlg -> A e. LMod ) |
22 |
17 21
|
syl |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> A e. LMod ) |
23 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
24 |
23
|
3ad2ant1 |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> R e. Ring ) |
25 |
|
simp3 |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( D ` M ) e. V ) |
26 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
27 |
6 7 26
|
ringinvcl |
|- ( ( R e. Ring /\ ( D ` M ) e. V ) -> ( H ` ( D ` M ) ) e. ( Base ` R ) ) |
28 |
24 25 27
|
syl2anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( H ` ( D ` M ) ) e. ( Base ` R ) ) |
29 |
1
|
matsca2 |
|- ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` A ) ) |
30 |
14 15 29
|
syl2anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> R = ( Scalar ` A ) ) |
31 |
30
|
fveq2d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) |
32 |
28 31
|
eleqtrd |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) ) |
33 |
1 2 4
|
maduf |
|- ( R e. CRing -> J : B --> B ) |
34 |
33
|
3ad2ant1 |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> J : B --> B ) |
35 |
34 20
|
ffvelrnd |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( J ` M ) e. B ) |
36 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
37 |
|
eqid |
|- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
38 |
4 36 9 37
|
lmodvscl |
|- ( ( A e. LMod /\ ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ ( J ` M ) e. B ) -> ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) e. B ) |
39 |
22 32 35 38
|
syl3anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) e. B ) |
40 |
4 36 37 9 10
|
assaassr |
|- ( ( A e. AssAlg /\ ( ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ M e. B /\ ( J ` M ) e. B ) ) -> ( M ( .r ` A ) ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) = ( ( H ` ( D ` M ) ) .xb ( M ( .r ` A ) ( J ` M ) ) ) ) |
41 |
17 32 20 35 40
|
syl13anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M ( .r ` A ) ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) = ( ( H ` ( D ` M ) ) .xb ( M ( .r ` A ) ( J ` M ) ) ) ) |
42 |
1 4 2 3 11 10 9
|
madurid |
|- ( ( M e. B /\ R e. CRing ) -> ( M ( .r ` A ) ( J ` M ) ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) |
43 |
20 15 42
|
syl2anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M ( .r ` A ) ( J ` M ) ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) |
44 |
43
|
oveq2d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( M ( .r ` A ) ( J ` M ) ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) |
45 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
46 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
47 |
6 7 45 46
|
unitlinv |
|- ( ( R e. Ring /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` R ) ( D ` M ) ) = ( 1r ` R ) ) |
48 |
24 25 47
|
syl2anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` R ) ( D ` M ) ) = ( 1r ` R ) ) |
49 |
30
|
fveq2d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( .r ` R ) = ( .r ` ( Scalar ` A ) ) ) |
50 |
49
|
oveqd |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` R ) ( D ` M ) ) = ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) ) |
51 |
30
|
fveq2d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( 1r ` R ) = ( 1r ` ( Scalar ` A ) ) ) |
52 |
48 50 51
|
3eqtr3d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) = ( 1r ` ( Scalar ` A ) ) ) |
53 |
52
|
oveq1d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) .xb ( 1r ` A ) ) = ( ( 1r ` ( Scalar ` A ) ) .xb ( 1r ` A ) ) ) |
54 |
26 6
|
unitcl |
|- ( ( D ` M ) e. V -> ( D ` M ) e. ( Base ` R ) ) |
55 |
54
|
3ad2ant3 |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( D ` M ) e. ( Base ` R ) ) |
56 |
55 31
|
eleqtrd |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( D ` M ) e. ( Base ` ( Scalar ` A ) ) ) |
57 |
4 11
|
ringidcl |
|- ( A e. Ring -> ( 1r ` A ) e. B ) |
58 |
19 57
|
syl |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( 1r ` A ) e. B ) |
59 |
|
eqid |
|- ( .r ` ( Scalar ` A ) ) = ( .r ` ( Scalar ` A ) ) |
60 |
4 36 9 37 59
|
lmodvsass |
|- ( ( A e. LMod /\ ( ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ ( D ` M ) e. ( Base ` ( Scalar ` A ) ) /\ ( 1r ` A ) e. B ) ) -> ( ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) .xb ( 1r ` A ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) |
61 |
22 32 56 58 60
|
syl13anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) ( .r ` ( Scalar ` A ) ) ( D ` M ) ) .xb ( 1r ` A ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) |
62 |
|
eqid |
|- ( 1r ` ( Scalar ` A ) ) = ( 1r ` ( Scalar ` A ) ) |
63 |
4 36 9 62
|
lmodvs1 |
|- ( ( A e. LMod /\ ( 1r ` A ) e. B ) -> ( ( 1r ` ( Scalar ` A ) ) .xb ( 1r ` A ) ) = ( 1r ` A ) ) |
64 |
22 58 63
|
syl2anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( 1r ` ( Scalar ` A ) ) .xb ( 1r ` A ) ) = ( 1r ` A ) ) |
65 |
53 61 64
|
3eqtr3d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) = ( 1r ` A ) ) |
66 |
41 44 65
|
3eqtrd |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M ( .r ` A ) ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) = ( 1r ` A ) ) |
67 |
4 36 37 9 10
|
assaass |
|- ( ( A e. AssAlg /\ ( ( H ` ( D ` M ) ) e. ( Base ` ( Scalar ` A ) ) /\ ( J ` M ) e. B /\ M e. B ) ) -> ( ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ( .r ` A ) M ) = ( ( H ` ( D ` M ) ) .xb ( ( J ` M ) ( .r ` A ) M ) ) ) |
68 |
17 32 35 20 67
|
syl13anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ( .r ` A ) M ) = ( ( H ` ( D ` M ) ) .xb ( ( J ` M ) ( .r ` A ) M ) ) ) |
69 |
1 4 2 3 11 10 9
|
madulid |
|- ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) ( .r ` A ) M ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) |
70 |
20 15 69
|
syl2anc |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( J ` M ) ( .r ` A ) M ) = ( ( D ` M ) .xb ( 1r ` A ) ) ) |
71 |
70
|
oveq2d |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( H ` ( D ` M ) ) .xb ( ( J ` M ) ( .r ` A ) M ) ) = ( ( H ` ( D ` M ) ) .xb ( ( D ` M ) .xb ( 1r ` A ) ) ) ) |
72 |
68 71 65
|
3eqtrd |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ( .r ` A ) M ) = ( 1r ` A ) ) |
73 |
4 10 11 5 8 19 20 39 66 72
|
invrvald |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M e. U /\ ( I ` M ) = ( ( H ` ( D ` M ) ) .xb ( J ` M ) ) ) ) |