| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matplusgcell.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matplusgcell.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | matinvgcell.v |  |-  V = ( invg ` R ) | 
						
							| 4 |  | matinvgcell.w |  |-  W = ( invg ` A ) | 
						
							| 5 | 1 2 | matrcl |  |-  ( X e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 6 | 5 | simpld |  |-  ( X e. B -> N e. Fin ) | 
						
							| 7 |  | simpl |  |-  ( ( R e. Ring /\ X e. B ) -> R e. Ring ) | 
						
							| 8 | 1 | matgrp |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Grp ) | 
						
							| 9 | 6 7 8 | syl2an2 |  |-  ( ( R e. Ring /\ X e. B ) -> A e. Grp ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 11 | 2 10 | grpidcl |  |-  ( A e. Grp -> ( 0g ` A ) e. B ) | 
						
							| 12 | 9 11 | syl |  |-  ( ( R e. Ring /\ X e. B ) -> ( 0g ` A ) e. B ) | 
						
							| 13 |  | simpr |  |-  ( ( R e. Ring /\ X e. B ) -> X e. B ) | 
						
							| 14 | 12 13 | jca |  |-  ( ( R e. Ring /\ X e. B ) -> ( ( 0g ` A ) e. B /\ X e. B ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( ( 0g ` A ) e. B /\ X e. B ) ) | 
						
							| 16 |  | eqid |  |-  ( -g ` A ) = ( -g ` A ) | 
						
							| 17 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 18 | 1 2 16 17 | matsubgcell |  |-  ( ( R e. Ring /\ ( ( 0g ` A ) e. B /\ X e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( ( 0g ` A ) ( -g ` A ) X ) J ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) | 
						
							| 19 | 15 18 | syld3an2 |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( ( 0g ` A ) ( -g ` A ) X ) J ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) | 
						
							| 20 | 2 16 4 10 | grpinvval2 |  |-  ( ( A e. Grp /\ X e. B ) -> ( W ` X ) = ( ( 0g ` A ) ( -g ` A ) X ) ) | 
						
							| 21 | 9 13 20 | syl2anc |  |-  ( ( R e. Ring /\ X e. B ) -> ( W ` X ) = ( ( 0g ` A ) ( -g ` A ) X ) ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( W ` X ) = ( ( 0g ` A ) ( -g ` A ) X ) ) | 
						
							| 23 | 22 | oveqd |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( W ` X ) J ) = ( I ( ( 0g ` A ) ( -g ` A ) X ) J ) ) | 
						
							| 24 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 25 | 24 | 3ad2ant1 |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> R e. Grp ) | 
						
							| 26 |  | simp3 |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I e. N /\ J e. N ) ) | 
						
							| 27 | 2 | eleq2i |  |-  ( X e. B <-> X e. ( Base ` A ) ) | 
						
							| 28 | 27 | biimpi |  |-  ( X e. B -> X e. ( Base ` A ) ) | 
						
							| 29 | 28 | 3ad2ant2 |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> X e. ( Base ` A ) ) | 
						
							| 30 |  | df-3an |  |-  ( ( I e. N /\ J e. N /\ X e. ( Base ` A ) ) <-> ( ( I e. N /\ J e. N ) /\ X e. ( Base ` A ) ) ) | 
						
							| 31 | 26 29 30 | sylanbrc |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I e. N /\ J e. N /\ X e. ( Base ` A ) ) ) | 
						
							| 32 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 33 | 1 32 | matecl |  |-  ( ( I e. N /\ J e. N /\ X e. ( Base ` A ) ) -> ( I X J ) e. ( Base ` R ) ) | 
						
							| 34 | 31 33 | syl |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I X J ) e. ( Base ` R ) ) | 
						
							| 35 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 36 | 32 17 3 35 | grpinvval2 |  |-  ( ( R e. Grp /\ ( I X J ) e. ( Base ` R ) ) -> ( V ` ( I X J ) ) = ( ( 0g ` R ) ( -g ` R ) ( I X J ) ) ) | 
						
							| 37 | 25 34 36 | syl2anc |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( V ` ( I X J ) ) = ( ( 0g ` R ) ( -g ` R ) ( I X J ) ) ) | 
						
							| 38 | 6 | anim1i |  |-  ( ( X e. B /\ R e. Ring ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 39 | 38 | ancoms |  |-  ( ( R e. Ring /\ X e. B ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 40 | 1 35 | mat0op |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( R e. Ring /\ X e. B ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 42 | 41 | 3adant3 |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( 0g ` A ) = ( x e. N , y e. N |-> ( 0g ` R ) ) ) | 
						
							| 43 |  | eqidd |  |-  ( ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) /\ ( x = I /\ y = J ) ) -> ( 0g ` R ) = ( 0g ` R ) ) | 
						
							| 44 | 26 | simpld |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> I e. N ) | 
						
							| 45 |  | simp3r |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> J e. N ) | 
						
							| 46 |  | fvexd |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( 0g ` R ) e. _V ) | 
						
							| 47 | 42 43 44 45 46 | ovmpod |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( 0g ` A ) J ) = ( 0g ` R ) ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( 0g ` R ) = ( I ( 0g ` A ) J ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( ( 0g ` R ) ( -g ` R ) ( I X J ) ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) | 
						
							| 50 | 37 49 | eqtrd |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( V ` ( I X J ) ) = ( ( I ( 0g ` A ) J ) ( -g ` R ) ( I X J ) ) ) | 
						
							| 51 | 19 23 50 | 3eqtr4d |  |-  ( ( R e. Ring /\ X e. B /\ ( I e. N /\ J e. N ) ) -> ( I ( W ` X ) J ) = ( V ` ( I X J ) ) ) |