| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matmulr.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matmulr.t |  |-  .x. = ( R maMul <. N , N , N >. ) | 
						
							| 3 |  | ovex |  |-  ( R freeLMod ( N X. N ) ) e. _V | 
						
							| 4 | 2 | ovexi |  |-  .x. e. _V | 
						
							| 5 | 3 4 | pm3.2i |  |-  ( ( R freeLMod ( N X. N ) ) e. _V /\ .x. e. _V ) | 
						
							| 6 |  | mulridx |  |-  .r = Slot ( .r ` ndx ) | 
						
							| 7 | 6 | setsid |  |-  ( ( ( R freeLMod ( N X. N ) ) e. _V /\ .x. e. _V ) -> .x. = ( .r ` ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) ) | 
						
							| 8 | 5 7 | mp1i |  |-  ( ( N e. Fin /\ R e. V ) -> .x. = ( .r ` ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) ) | 
						
							| 9 |  | eqid |  |-  ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) | 
						
							| 10 | 1 9 2 | matval |  |-  ( ( N e. Fin /\ R e. V ) -> A = ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( N e. Fin /\ R e. V ) -> ( .r ` A ) = ( .r ` ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) ) | 
						
							| 12 | 8 11 | eqtr4d |  |-  ( ( N e. Fin /\ R e. V ) -> .x. = ( .r ` A ) ) |