Step |
Hyp |
Ref |
Expression |
1 |
|
matmulr.a |
|- A = ( N Mat R ) |
2 |
|
matmulr.t |
|- .x. = ( R maMul <. N , N , N >. ) |
3 |
|
ovex |
|- ( R freeLMod ( N X. N ) ) e. _V |
4 |
2
|
ovexi |
|- .x. e. _V |
5 |
3 4
|
pm3.2i |
|- ( ( R freeLMod ( N X. N ) ) e. _V /\ .x. e. _V ) |
6 |
|
mulrid |
|- .r = Slot ( .r ` ndx ) |
7 |
6
|
setsid |
|- ( ( ( R freeLMod ( N X. N ) ) e. _V /\ .x. e. _V ) -> .x. = ( .r ` ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) ) |
8 |
5 7
|
mp1i |
|- ( ( N e. Fin /\ R e. V ) -> .x. = ( .r ` ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) ) |
9 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
10 |
1 9 2
|
matval |
|- ( ( N e. Fin /\ R e. V ) -> A = ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) |
11 |
10
|
fveq2d |
|- ( ( N e. Fin /\ R e. V ) -> ( .r ` A ) = ( .r ` ( ( R freeLMod ( N X. N ) ) sSet <. ( .r ` ndx ) , .x. >. ) ) ) |
12 |
8 11
|
eqtr4d |
|- ( ( N e. Fin /\ R e. V ) -> .x. = ( .r ` A ) ) |