Step |
Hyp |
Ref |
Expression |
1 |
|
matplusg2.a |
|- A = ( N Mat R ) |
2 |
|
matplusg2.b |
|- B = ( Base ` A ) |
3 |
|
matplusg2.p |
|- .+b = ( +g ` A ) |
4 |
|
matplusg2.q |
|- .+ = ( +g ` R ) |
5 |
1 2
|
matrcl |
|- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
6 |
5
|
adantr |
|- ( ( X e. B /\ Y e. B ) -> ( N e. Fin /\ R e. _V ) ) |
7 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
8 |
1 7
|
matplusg |
|- ( ( N e. Fin /\ R e. _V ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
9 |
8 3
|
eqtr4di |
|- ( ( N e. Fin /\ R e. _V ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = .+b ) |
10 |
6 9
|
syl |
|- ( ( X e. B /\ Y e. B ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = .+b ) |
11 |
10
|
oveqd |
|- ( ( X e. B /\ Y e. B ) -> ( X ( +g ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X .+b Y ) ) |
12 |
|
eqid |
|- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
13 |
6
|
simprd |
|- ( ( X e. B /\ Y e. B ) -> R e. _V ) |
14 |
6
|
simpld |
|- ( ( X e. B /\ Y e. B ) -> N e. Fin ) |
15 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
16 |
14 14 15
|
syl2anc |
|- ( ( X e. B /\ Y e. B ) -> ( N X. N ) e. Fin ) |
17 |
|
simpl |
|- ( ( X e. B /\ Y e. B ) -> X e. B ) |
18 |
1 7
|
matbas |
|- ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
19 |
6 18
|
syl |
|- ( ( X e. B /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
20 |
19 2
|
eqtr4di |
|- ( ( X e. B /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = B ) |
21 |
17 20
|
eleqtrrd |
|- ( ( X e. B /\ Y e. B ) -> X e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
22 |
|
simpr |
|- ( ( X e. B /\ Y e. B ) -> Y e. B ) |
23 |
22 20
|
eleqtrrd |
|- ( ( X e. B /\ Y e. B ) -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
24 |
|
eqid |
|- ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` ( R freeLMod ( N X. N ) ) ) |
25 |
7 12 13 16 21 23 4 24
|
frlmplusgval |
|- ( ( X e. B /\ Y e. B ) -> ( X ( +g ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X oF .+ Y ) ) |
26 |
11 25
|
eqtr3d |
|- ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) ) |