| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matsc.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matsc.k |  |-  K = ( Base ` R ) | 
						
							| 3 |  | matsc.m |  |-  .x. = ( .s ` A ) | 
						
							| 4 |  | matsc.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | simp3 |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> L e. K ) | 
						
							| 6 |  | 3simpa |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 7 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 8 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 10 | 8 9 | ringidcl |  |-  ( A e. Ring -> ( 1r ` A ) e. ( Base ` A ) ) | 
						
							| 11 | 6 7 10 | 3syl |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( 1r ` A ) e. ( Base ` A ) ) | 
						
							| 12 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 13 |  | eqid |  |-  ( N X. N ) = ( N X. N ) | 
						
							| 14 | 1 8 2 3 12 13 | matvsca2 |  |-  ( ( L e. K /\ ( 1r ` A ) e. ( Base ` A ) ) -> ( L .x. ( 1r ` A ) ) = ( ( ( N X. N ) X. { L } ) oF ( .r ` R ) ( 1r ` A ) ) ) | 
						
							| 15 | 5 11 14 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L .x. ( 1r ` A ) ) = ( ( ( N X. N ) X. { L } ) oF ( .r ` R ) ( 1r ` A ) ) ) | 
						
							| 16 |  | simp1 |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> N e. Fin ) | 
						
							| 17 |  | simp13 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ L e. K ) /\ i e. N /\ j e. N ) -> L e. K ) | 
						
							| 18 |  | fvex |  |-  ( 1r ` R ) e. _V | 
						
							| 19 | 4 | fvexi |  |-  .0. e. _V | 
						
							| 20 | 18 19 | ifex |  |-  if ( i = j , ( 1r ` R ) , .0. ) e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ( ( N e. Fin /\ R e. Ring /\ L e. K ) /\ i e. N /\ j e. N ) -> if ( i = j , ( 1r ` R ) , .0. ) e. _V ) | 
						
							| 22 |  | fconstmpo |  |-  ( ( N X. N ) X. { L } ) = ( i e. N , j e. N |-> L ) | 
						
							| 23 | 22 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( ( N X. N ) X. { L } ) = ( i e. N , j e. N |-> L ) ) | 
						
							| 24 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 25 | 1 24 4 | mat1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , .0. ) ) ) | 
						
							| 26 | 25 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , .0. ) ) ) | 
						
							| 27 | 16 16 17 21 23 26 | offval22 |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( ( ( N X. N ) X. { L } ) oF ( .r ` R ) ( 1r ` A ) ) = ( i e. N , j e. N |-> ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) ) ) | 
						
							| 28 |  | ovif2 |  |-  ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) = if ( i = j , ( L ( .r ` R ) ( 1r ` R ) ) , ( L ( .r ` R ) .0. ) ) | 
						
							| 29 | 2 12 24 | ringridm |  |-  ( ( R e. Ring /\ L e. K ) -> ( L ( .r ` R ) ( 1r ` R ) ) = L ) | 
						
							| 30 | 29 | 3adant1 |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L ( .r ` R ) ( 1r ` R ) ) = L ) | 
						
							| 31 | 2 12 4 | ringrz |  |-  ( ( R e. Ring /\ L e. K ) -> ( L ( .r ` R ) .0. ) = .0. ) | 
						
							| 32 | 31 | 3adant1 |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L ( .r ` R ) .0. ) = .0. ) | 
						
							| 33 | 30 32 | ifeq12d |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> if ( i = j , ( L ( .r ` R ) ( 1r ` R ) ) , ( L ( .r ` R ) .0. ) ) = if ( i = j , L , .0. ) ) | 
						
							| 34 | 28 33 | eqtrid |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) = if ( i = j , L , .0. ) ) | 
						
							| 35 | 34 | mpoeq3dv |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( i e. N , j e. N |-> ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) ) = ( i e. N , j e. N |-> if ( i = j , L , .0. ) ) ) | 
						
							| 36 | 15 27 35 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L .x. ( 1r ` A ) ) = ( i e. N , j e. N |-> if ( i = j , L , .0. ) ) ) |