| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matsca2.a |
|- A = ( N Mat R ) |
| 2 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
| 3 |
2
|
anidms |
|- ( N e. Fin -> ( N X. N ) e. Fin ) |
| 4 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
| 5 |
4
|
frlmsca |
|- ( ( R e. V /\ ( N X. N ) e. Fin ) -> R = ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
| 6 |
5
|
ancoms |
|- ( ( ( N X. N ) e. Fin /\ R e. V ) -> R = ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
| 7 |
3 6
|
sylan |
|- ( ( N e. Fin /\ R e. V ) -> R = ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
| 8 |
1 4
|
matsca |
|- ( ( N e. Fin /\ R e. V ) -> ( Scalar ` ( R freeLMod ( N X. N ) ) ) = ( Scalar ` A ) ) |
| 9 |
7 8
|
eqtrd |
|- ( ( N e. Fin /\ R e. V ) -> R = ( Scalar ` A ) ) |