| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matbas.a |
|- A = ( N Mat R ) |
| 2 |
|
matbas.g |
|- G = ( R freeLMod ( N X. N ) ) |
| 3 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
| 4 |
|
3re |
|- 3 e. RR |
| 5 |
|
3lt5 |
|- 3 < 5 |
| 6 |
4 5
|
gtneii |
|- 5 =/= 3 |
| 7 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
| 8 |
|
mulrndx |
|- ( .r ` ndx ) = 3 |
| 9 |
7 8
|
neeq12i |
|- ( ( Scalar ` ndx ) =/= ( .r ` ndx ) <-> 5 =/= 3 ) |
| 10 |
6 9
|
mpbir |
|- ( Scalar ` ndx ) =/= ( .r ` ndx ) |
| 11 |
3 10
|
setsnid |
|- ( Scalar ` G ) = ( Scalar ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) |
| 12 |
|
eqid |
|- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
| 13 |
1 2 12
|
matval |
|- ( ( N e. Fin /\ R e. V ) -> A = ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) |
| 14 |
13
|
fveq2d |
|- ( ( N e. Fin /\ R e. V ) -> ( Scalar ` A ) = ( Scalar ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) ) |
| 15 |
11 14
|
eqtr4id |
|- ( ( N e. Fin /\ R e. V ) -> ( Scalar ` G ) = ( Scalar ` A ) ) |