Metamath Proof Explorer


Theorem matsubg

Description: The matrix ring has the same addition as its underlying group. (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses matsubg.a
|- A = ( N Mat R )
matsubg.g
|- G = ( R freeLMod ( N X. N ) )
Assertion matsubg
|- ( ( N e. Fin /\ R e. V ) -> ( -g ` G ) = ( -g ` A ) )

Proof

Step Hyp Ref Expression
1 matsubg.a
 |-  A = ( N Mat R )
2 matsubg.g
 |-  G = ( R freeLMod ( N X. N ) )
3 1 2 matbas
 |-  ( ( N e. Fin /\ R e. V ) -> ( Base ` G ) = ( Base ` A ) )
4 1 2 matplusg
 |-  ( ( N e. Fin /\ R e. V ) -> ( +g ` G ) = ( +g ` A ) )
5 3 4 grpsubpropd
 |-  ( ( N e. Fin /\ R e. V ) -> ( -g ` G ) = ( -g ` A ) )