| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mattposcl.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mattposcl.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 | 1 3 2 | matbas2i |  |-  ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 5 |  | elmapi |  |-  ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 6 |  | tposf |  |-  ( M : ( N X. N ) --> ( Base ` R ) -> tpos M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 7 | 4 5 6 | 3syl |  |-  ( M e. B -> tpos M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 8 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 9 | 1 2 | matrcl |  |-  ( M e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 10 | 9 | simpld |  |-  ( M e. B -> N e. Fin ) | 
						
							| 11 |  | xpfi |  |-  ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) | 
						
							| 12 | 11 | anidms |  |-  ( N e. Fin -> ( N X. N ) e. Fin ) | 
						
							| 13 | 10 12 | syl |  |-  ( M e. B -> ( N X. N ) e. Fin ) | 
						
							| 14 |  | elmapg |  |-  ( ( ( Base ` R ) e. _V /\ ( N X. N ) e. Fin ) -> ( tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) <-> tpos M : ( N X. N ) --> ( Base ` R ) ) ) | 
						
							| 15 | 8 13 14 | sylancr |  |-  ( M e. B -> ( tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) <-> tpos M : ( N X. N ) --> ( Base ` R ) ) ) | 
						
							| 16 | 7 15 | mpbird |  |-  ( M e. B -> tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 17 | 1 3 | matbas2 |  |-  ( ( N e. Fin /\ R e. _V ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) | 
						
							| 18 | 9 17 | syl |  |-  ( M e. B -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) | 
						
							| 19 | 18 2 | eqtr4di |  |-  ( M e. B -> ( ( Base ` R ) ^m ( N X. N ) ) = B ) | 
						
							| 20 | 16 19 | eleqtrd |  |-  ( M e. B -> tpos M e. B ) |