| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mattposcl.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mattposcl.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 | 1 3 2 | matbas2i |  |-  ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 5 |  | elmapi |  |-  ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( M e. B -> M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 7 |  | frel |  |-  ( M : ( N X. N ) --> ( Base ` R ) -> Rel M ) | 
						
							| 8 | 6 7 | syl |  |-  ( M e. B -> Rel M ) | 
						
							| 9 |  | relxp |  |-  Rel ( N X. N ) | 
						
							| 10 | 6 | fdmd |  |-  ( M e. B -> dom M = ( N X. N ) ) | 
						
							| 11 | 10 | releqd |  |-  ( M e. B -> ( Rel dom M <-> Rel ( N X. N ) ) ) | 
						
							| 12 | 9 11 | mpbiri |  |-  ( M e. B -> Rel dom M ) | 
						
							| 13 |  | tpostpos2 |  |-  ( ( Rel M /\ Rel dom M ) -> tpos tpos M = M ) | 
						
							| 14 | 8 12 13 | syl2anc |  |-  ( M e. B -> tpos tpos M = M ) |