Step |
Hyp |
Ref |
Expression |
1 |
|
mattposcl.a |
|- A = ( N Mat R ) |
2 |
|
mattposcl.b |
|- B = ( Base ` A ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
1 3 2
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
5 |
|
elmapi |
|- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
6 |
4 5
|
syl |
|- ( M e. B -> M : ( N X. N ) --> ( Base ` R ) ) |
7 |
|
frel |
|- ( M : ( N X. N ) --> ( Base ` R ) -> Rel M ) |
8 |
6 7
|
syl |
|- ( M e. B -> Rel M ) |
9 |
|
relxp |
|- Rel ( N X. N ) |
10 |
6
|
fdmd |
|- ( M e. B -> dom M = ( N X. N ) ) |
11 |
10
|
releqd |
|- ( M e. B -> ( Rel dom M <-> Rel ( N X. N ) ) ) |
12 |
9 11
|
mpbiri |
|- ( M e. B -> Rel dom M ) |
13 |
|
tpostpos2 |
|- ( ( Rel M /\ Rel dom M ) -> tpos tpos M = M ) |
14 |
8 12 13
|
syl2anc |
|- ( M e. B -> tpos tpos M = M ) |