Step |
Hyp |
Ref |
Expression |
1 |
|
matunit.a |
|- A = ( N Mat R ) |
2 |
|
matunit.d |
|- D = ( N maDet R ) |
3 |
|
matunit.b |
|- B = ( Base ` A ) |
4 |
|
matunit.u |
|- U = ( Unit ` A ) |
5 |
|
matunit.v |
|- V = ( Unit ` R ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
9 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
10 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
11 |
10
|
ad2antrr |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> R e. Ring ) |
12 |
2 1 3 6
|
mdetcl |
|- ( ( R e. CRing /\ M e. B ) -> ( D ` M ) e. ( Base ` R ) ) |
13 |
12
|
adantr |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` M ) e. ( Base ` R ) ) |
14 |
2 1 3 6
|
mdetf |
|- ( R e. CRing -> D : B --> ( Base ` R ) ) |
15 |
14
|
ad2antrr |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> D : B --> ( Base ` R ) ) |
16 |
1 3
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
17 |
16
|
simpld |
|- ( M e. B -> N e. Fin ) |
18 |
17
|
ad2antlr |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> N e. Fin ) |
19 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
20 |
18 11 19
|
syl2anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> A e. Ring ) |
21 |
|
eqid |
|- ( invr ` A ) = ( invr ` A ) |
22 |
4 21 3
|
ringinvcl |
|- ( ( A e. Ring /\ M e. U ) -> ( ( invr ` A ) ` M ) e. B ) |
23 |
20 22
|
sylancom |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( ( invr ` A ) ` M ) e. B ) |
24 |
15 23
|
ffvelrnd |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` ( ( invr ` A ) ` M ) ) e. ( Base ` R ) ) |
25 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
26 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
27 |
4 21 25 26
|
unitrinv |
|- ( ( A e. Ring /\ M e. U ) -> ( M ( .r ` A ) ( ( invr ` A ) ` M ) ) = ( 1r ` A ) ) |
28 |
20 27
|
sylancom |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( M ( .r ` A ) ( ( invr ` A ) ` M ) ) = ( 1r ` A ) ) |
29 |
28
|
fveq2d |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` ( M ( .r ` A ) ( ( invr ` A ) ` M ) ) ) = ( D ` ( 1r ` A ) ) ) |
30 |
|
simpll |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> R e. CRing ) |
31 |
|
simplr |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> M e. B ) |
32 |
1 3 2 7 25
|
mdetmul |
|- ( ( R e. CRing /\ M e. B /\ ( ( invr ` A ) ` M ) e. B ) -> ( D ` ( M ( .r ` A ) ( ( invr ` A ) ` M ) ) ) = ( ( D ` M ) ( .r ` R ) ( D ` ( ( invr ` A ) ` M ) ) ) ) |
33 |
30 31 23 32
|
syl3anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` ( M ( .r ` A ) ( ( invr ` A ) ` M ) ) ) = ( ( D ` M ) ( .r ` R ) ( D ` ( ( invr ` A ) ` M ) ) ) ) |
34 |
2 1 26 8
|
mdet1 |
|- ( ( R e. CRing /\ N e. Fin ) -> ( D ` ( 1r ` A ) ) = ( 1r ` R ) ) |
35 |
30 18 34
|
syl2anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` ( 1r ` A ) ) = ( 1r ` R ) ) |
36 |
29 33 35
|
3eqtr3d |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( ( D ` M ) ( .r ` R ) ( D ` ( ( invr ` A ) ` M ) ) ) = ( 1r ` R ) ) |
37 |
4 21 25 26
|
unitlinv |
|- ( ( A e. Ring /\ M e. U ) -> ( ( ( invr ` A ) ` M ) ( .r ` A ) M ) = ( 1r ` A ) ) |
38 |
20 37
|
sylancom |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( ( ( invr ` A ) ` M ) ( .r ` A ) M ) = ( 1r ` A ) ) |
39 |
38
|
fveq2d |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` ( ( ( invr ` A ) ` M ) ( .r ` A ) M ) ) = ( D ` ( 1r ` A ) ) ) |
40 |
1 3 2 7 25
|
mdetmul |
|- ( ( R e. CRing /\ ( ( invr ` A ) ` M ) e. B /\ M e. B ) -> ( D ` ( ( ( invr ` A ) ` M ) ( .r ` A ) M ) ) = ( ( D ` ( ( invr ` A ) ` M ) ) ( .r ` R ) ( D ` M ) ) ) |
41 |
30 23 31 40
|
syl3anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` ( ( ( invr ` A ) ` M ) ( .r ` A ) M ) ) = ( ( D ` ( ( invr ` A ) ` M ) ) ( .r ` R ) ( D ` M ) ) ) |
42 |
39 41 35
|
3eqtr3d |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( ( D ` ( ( invr ` A ) ` M ) ) ( .r ` R ) ( D ` M ) ) = ( 1r ` R ) ) |
43 |
6 7 8 5 9 11 13 24 36 42
|
invrvald |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( ( D ` M ) e. V /\ ( ( invr ` R ) ` ( D ` M ) ) = ( D ` ( ( invr ` A ) ` M ) ) ) ) |
44 |
43
|
simpld |
|- ( ( ( R e. CRing /\ M e. B ) /\ M e. U ) -> ( D ` M ) e. V ) |
45 |
|
eqid |
|- ( N maAdju R ) = ( N maAdju R ) |
46 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
47 |
1 45 2 3 4 5 9 21 46
|
matinv |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> ( M e. U /\ ( ( invr ` A ) ` M ) = ( ( ( invr ` R ) ` ( D ` M ) ) ( .s ` A ) ( ( N maAdju R ) ` M ) ) ) ) |
48 |
47
|
simpld |
|- ( ( R e. CRing /\ M e. B /\ ( D ` M ) e. V ) -> M e. U ) |
49 |
48
|
3expa |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( D ` M ) e. V ) -> M e. U ) |
50 |
44 49
|
impbida |
|- ( ( R e. CRing /\ M e. B ) -> ( M e. U <-> ( D ` M ) e. V ) ) |