Step |
Hyp |
Ref |
Expression |
1 |
|
matval.a |
|- A = ( N Mat R ) |
2 |
|
matval.g |
|- G = ( R freeLMod ( N X. N ) ) |
3 |
|
matval.t |
|- .x. = ( R maMul <. N , N , N >. ) |
4 |
|
elex |
|- ( R e. V -> R e. _V ) |
5 |
|
id |
|- ( r = R -> r = R ) |
6 |
|
id |
|- ( n = N -> n = N ) |
7 |
6
|
sqxpeqd |
|- ( n = N -> ( n X. n ) = ( N X. N ) ) |
8 |
5 7
|
oveqan12rd |
|- ( ( n = N /\ r = R ) -> ( r freeLMod ( n X. n ) ) = ( R freeLMod ( N X. N ) ) ) |
9 |
8 2
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( r freeLMod ( n X. n ) ) = G ) |
10 |
6 6 6
|
oteq123d |
|- ( n = N -> <. n , n , n >. = <. N , N , N >. ) |
11 |
5 10
|
oveqan12rd |
|- ( ( n = N /\ r = R ) -> ( r maMul <. n , n , n >. ) = ( R maMul <. N , N , N >. ) ) |
12 |
11 3
|
eqtr4di |
|- ( ( n = N /\ r = R ) -> ( r maMul <. n , n , n >. ) = .x. ) |
13 |
12
|
opeq2d |
|- ( ( n = N /\ r = R ) -> <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. = <. ( .r ` ndx ) , .x. >. ) |
14 |
9 13
|
oveq12d |
|- ( ( n = N /\ r = R ) -> ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |
15 |
|
df-mat |
|- Mat = ( n e. Fin , r e. _V |-> ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) ) |
16 |
|
ovex |
|- ( G sSet <. ( .r ` ndx ) , .x. >. ) e. _V |
17 |
14 15 16
|
ovmpoa |
|- ( ( N e. Fin /\ R e. _V ) -> ( N Mat R ) = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |
18 |
4 17
|
sylan2 |
|- ( ( N e. Fin /\ R e. V ) -> ( N Mat R ) = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |
19 |
1 18
|
syl5eq |
|- ( ( N e. Fin /\ R e. V ) -> A = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |