Metamath Proof Explorer


Theorem matvsca

Description: The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matbas.a
|- A = ( N Mat R )
matbas.g
|- G = ( R freeLMod ( N X. N ) )
Assertion matvsca
|- ( ( N e. Fin /\ R e. V ) -> ( .s ` G ) = ( .s ` A ) )

Proof

Step Hyp Ref Expression
1 matbas.a
 |-  A = ( N Mat R )
2 matbas.g
 |-  G = ( R freeLMod ( N X. N ) )
3 vscaid
 |-  .s = Slot ( .s ` ndx )
4 vscandx
 |-  ( .s ` ndx ) = 6
5 3re
 |-  3 e. RR
6 3lt6
 |-  3 < 6
7 5 6 gtneii
 |-  6 =/= 3
8 mulrndx
 |-  ( .r ` ndx ) = 3
9 7 8 neeqtrri
 |-  6 =/= ( .r ` ndx )
10 4 9 eqnetri
 |-  ( .s ` ndx ) =/= ( .r ` ndx )
11 3 10 setsnid
 |-  ( .s ` G ) = ( .s ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) )
12 eqid
 |-  ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. )
13 1 2 12 matval
 |-  ( ( N e. Fin /\ R e. V ) -> A = ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) )
14 13 fveq2d
 |-  ( ( N e. Fin /\ R e. V ) -> ( .s ` A ) = ( .s ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) )
15 11 14 eqtr4id
 |-  ( ( N e. Fin /\ R e. V ) -> ( .s ` G ) = ( .s ` A ) )