Step |
Hyp |
Ref |
Expression |
1 |
|
matvsca2.a |
|- A = ( N Mat R ) |
2 |
|
matvsca2.b |
|- B = ( Base ` A ) |
3 |
|
matvsca2.k |
|- K = ( Base ` R ) |
4 |
|
matvsca2.v |
|- .x. = ( .s ` A ) |
5 |
|
matvsca2.t |
|- .X. = ( .r ` R ) |
6 |
|
matvsca2.c |
|- C = ( N X. N ) |
7 |
1 2
|
matrcl |
|- ( Y e. B -> ( N e. Fin /\ R e. _V ) ) |
8 |
7
|
adantl |
|- ( ( X e. K /\ Y e. B ) -> ( N e. Fin /\ R e. _V ) ) |
9 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
10 |
1 9
|
matvsca |
|- ( ( N e. Fin /\ R e. _V ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` A ) ) |
11 |
8 10
|
syl |
|- ( ( X e. K /\ Y e. B ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` A ) ) |
12 |
11 4
|
eqtr4di |
|- ( ( X e. K /\ Y e. B ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = .x. ) |
13 |
12
|
oveqd |
|- ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X .x. Y ) ) |
14 |
|
eqid |
|- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
15 |
8
|
simpld |
|- ( ( X e. K /\ Y e. B ) -> N e. Fin ) |
16 |
|
xpfi |
|- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
17 |
15 15 16
|
syl2anc |
|- ( ( X e. K /\ Y e. B ) -> ( N X. N ) e. Fin ) |
18 |
|
simpl |
|- ( ( X e. K /\ Y e. B ) -> X e. K ) |
19 |
|
simpr |
|- ( ( X e. K /\ Y e. B ) -> Y e. B ) |
20 |
1 9
|
matbas |
|- ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
21 |
8 20
|
syl |
|- ( ( X e. K /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
22 |
21 2
|
eqtr4di |
|- ( ( X e. K /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = B ) |
23 |
19 22
|
eleqtrrd |
|- ( ( X e. K /\ Y e. B ) -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
24 |
|
eqid |
|- ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` ( R freeLMod ( N X. N ) ) ) |
25 |
9 14 3 17 18 23 24 5
|
frlmvscafval |
|- ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( ( ( N X. N ) X. { X } ) oF .X. Y ) ) |
26 |
6
|
xpeq1i |
|- ( C X. { X } ) = ( ( N X. N ) X. { X } ) |
27 |
26
|
oveq1i |
|- ( ( C X. { X } ) oF .X. Y ) = ( ( ( N X. N ) X. { X } ) oF .X. Y ) |
28 |
25 27
|
eqtr4di |
|- ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( ( C X. { X } ) oF .X. Y ) ) |
29 |
13 28
|
eqtr3d |
|- ( ( X e. K /\ Y e. B ) -> ( X .x. Y ) = ( ( C X. { X } ) oF .X. Y ) ) |