| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matvsca2.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matvsca2.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | matvsca2.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | matvsca2.v |  |-  .x. = ( .s ` A ) | 
						
							| 5 |  | matvsca2.t |  |-  .X. = ( .r ` R ) | 
						
							| 6 |  | matvsca2.c |  |-  C = ( N X. N ) | 
						
							| 7 | 1 2 | matrcl |  |-  ( Y e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( X e. K /\ Y e. B ) -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 9 |  | eqid |  |-  ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) | 
						
							| 10 | 1 9 | matvsca |  |-  ( ( N e. Fin /\ R e. _V ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` A ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( X e. K /\ Y e. B ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` A ) ) | 
						
							| 12 | 11 4 | eqtr4di |  |-  ( ( X e. K /\ Y e. B ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = .x. ) | 
						
							| 13 | 12 | oveqd |  |-  ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X .x. Y ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) | 
						
							| 15 | 8 | simpld |  |-  ( ( X e. K /\ Y e. B ) -> N e. Fin ) | 
						
							| 16 |  | xpfi |  |-  ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) | 
						
							| 17 | 15 15 16 | syl2anc |  |-  ( ( X e. K /\ Y e. B ) -> ( N X. N ) e. Fin ) | 
						
							| 18 |  | simpl |  |-  ( ( X e. K /\ Y e. B ) -> X e. K ) | 
						
							| 19 |  | simpr |  |-  ( ( X e. K /\ Y e. B ) -> Y e. B ) | 
						
							| 20 | 1 9 | matbas |  |-  ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) | 
						
							| 21 | 8 20 | syl |  |-  ( ( X e. K /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) | 
						
							| 22 | 21 2 | eqtr4di |  |-  ( ( X e. K /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = B ) | 
						
							| 23 | 19 22 | eleqtrrd |  |-  ( ( X e. K /\ Y e. B ) -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) | 
						
							| 24 |  | eqid |  |-  ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` ( R freeLMod ( N X. N ) ) ) | 
						
							| 25 | 9 14 3 17 18 23 24 5 | frlmvscafval |  |-  ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( ( ( N X. N ) X. { X } ) oF .X. Y ) ) | 
						
							| 26 | 6 | xpeq1i |  |-  ( C X. { X } ) = ( ( N X. N ) X. { X } ) | 
						
							| 27 | 26 | oveq1i |  |-  ( ( C X. { X } ) oF .X. Y ) = ( ( ( N X. N ) X. { X } ) oF .X. Y ) | 
						
							| 28 | 25 27 | eqtr4di |  |-  ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( ( C X. { X } ) oF .X. Y ) ) | 
						
							| 29 | 13 28 | eqtr3d |  |-  ( ( X e. K /\ Y e. B ) -> ( X .x. Y ) = ( ( C X. { X } ) oF .X. Y ) ) |