| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matbas.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matbas.g |  |-  G = ( R freeLMod ( N X. N ) ) | 
						
							| 3 |  | vscaid |  |-  .s = Slot ( .s ` ndx ) | 
						
							| 4 |  | vscandx |  |-  ( .s ` ndx ) = 6 | 
						
							| 5 |  | 3re |  |-  3 e. RR | 
						
							| 6 |  | 3lt6 |  |-  3 < 6 | 
						
							| 7 | 5 6 | gtneii |  |-  6 =/= 3 | 
						
							| 8 |  | mulrndx |  |-  ( .r ` ndx ) = 3 | 
						
							| 9 | 7 8 | neeqtrri |  |-  6 =/= ( .r ` ndx ) | 
						
							| 10 | 4 9 | eqnetri |  |-  ( .s ` ndx ) =/= ( .r ` ndx ) | 
						
							| 11 | 3 10 | setsnid |  |-  ( .s ` G ) = ( .s ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) | 
						
							| 12 |  | eqid |  |-  ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) | 
						
							| 13 | 1 2 12 | matval |  |-  ( ( N e. Fin /\ R e. V ) -> A = ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( N e. Fin /\ R e. V ) -> ( .s ` A ) = ( .s ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) ) | 
						
							| 15 | 11 14 | eqtr4id |  |-  ( ( N e. Fin /\ R e. V ) -> ( .s ` G ) = ( .s ` A ) ) |