| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mavmul0.t | 
							 |-  .x. = ( R maVecMul <. N , N >. )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( N Mat R ) = ( N Mat R )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` R ) = ( .r ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							 |-  ( ( N = (/) /\ R e. V ) -> R e. V )  | 
						
						
							| 6 | 
							
								
							 | 
							0fi | 
							 |-  (/) e. Fin  | 
						
						
							| 7 | 
							
								
							 | 
							eleq1 | 
							 |-  ( N = (/) -> ( N e. Fin <-> (/) e. Fin ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpbiri | 
							 |-  ( N = (/) -> N e. Fin )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( N = (/) /\ R e. V ) -> N e. Fin )  | 
						
						
							| 10 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 11 | 
							
								
							 | 
							snidg | 
							 |-  ( (/) e. _V -> (/) e. { (/) } ) | 
						
						
							| 12 | 
							
								10 11
							 | 
							mp1i | 
							 |-  ( ( N = (/) /\ R e. V ) -> (/) e. { (/) } ) | 
						
						
							| 13 | 
							
								
							 | 
							oveq1 | 
							 |-  ( N = (/) -> ( N Mat R ) = ( (/) Mat R ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( N Mat R ) = ( (/) Mat R ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq2d | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( Base ` ( N Mat R ) ) = ( Base ` ( (/) Mat R ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							mat0dimbas0 | 
							 |-  ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } ) | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( Base ` ( (/) Mat R ) ) = { (/) } ) | 
						
						
							| 18 | 
							
								15 17
							 | 
							eqtrd | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( Base ` ( N Mat R ) ) = { (/) } ) | 
						
						
							| 19 | 
							
								12 18
							 | 
							eleqtrrd | 
							 |-  ( ( N = (/) /\ R e. V ) -> (/) e. ( Base ` ( N Mat R ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqidd | 
							 |-  ( N = (/) -> (/) = (/) )  | 
						
						
							| 21 | 
							
								
							 | 
							el1o | 
							 |-  ( (/) e. 1o <-> (/) = (/) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibr | 
							 |-  ( N = (/) -> (/) e. 1o )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq2 | 
							 |-  ( N = (/) -> ( ( Base ` R ) ^m N ) = ( ( Base ` R ) ^m (/) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fvex | 
							 |-  ( Base ` R ) e. _V  | 
						
						
							| 25 | 
							
								
							 | 
							map0e | 
							 |-  ( ( Base ` R ) e. _V -> ( ( Base ` R ) ^m (/) ) = 1o )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							mp1i | 
							 |-  ( N = (/) -> ( ( Base ` R ) ^m (/) ) = 1o )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							eqtrd | 
							 |-  ( N = (/) -> ( ( Base ` R ) ^m N ) = 1o )  | 
						
						
							| 28 | 
							
								22 27
							 | 
							eleqtrrd | 
							 |-  ( N = (/) -> (/) e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantr | 
							 |-  ( ( N = (/) /\ R e. V ) -> (/) e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 30 | 
							
								2 1 3 4 5 9 19 29
							 | 
							mavmulval | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( (/) .x. (/) ) = ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							mpteq1 | 
							 |-  ( N = (/) -> ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = ( i e. (/) |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = ( i e. (/) |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							mpt0 | 
							 |-  ( i e. (/) |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = (/)  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eqtrdi | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = (/) )  | 
						
						
							| 35 | 
							
								30 34
							 | 
							eqtrd | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( (/) .x. (/) ) = (/) )  |