Step |
Hyp |
Ref |
Expression |
1 |
|
mavmul0.t |
|- .x. = ( R maVecMul <. N , N >. ) |
2 |
|
eqid |
|- ( N Mat R ) = ( N Mat R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
5 |
|
simpr |
|- ( ( N = (/) /\ R e. V ) -> R e. V ) |
6 |
|
0fin |
|- (/) e. Fin |
7 |
|
eleq1 |
|- ( N = (/) -> ( N e. Fin <-> (/) e. Fin ) ) |
8 |
6 7
|
mpbiri |
|- ( N = (/) -> N e. Fin ) |
9 |
8
|
adantr |
|- ( ( N = (/) /\ R e. V ) -> N e. Fin ) |
10 |
|
0ex |
|- (/) e. _V |
11 |
|
snidg |
|- ( (/) e. _V -> (/) e. { (/) } ) |
12 |
10 11
|
mp1i |
|- ( ( N = (/) /\ R e. V ) -> (/) e. { (/) } ) |
13 |
|
oveq1 |
|- ( N = (/) -> ( N Mat R ) = ( (/) Mat R ) ) |
14 |
13
|
adantr |
|- ( ( N = (/) /\ R e. V ) -> ( N Mat R ) = ( (/) Mat R ) ) |
15 |
14
|
fveq2d |
|- ( ( N = (/) /\ R e. V ) -> ( Base ` ( N Mat R ) ) = ( Base ` ( (/) Mat R ) ) ) |
16 |
|
mat0dimbas0 |
|- ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
17 |
16
|
adantl |
|- ( ( N = (/) /\ R e. V ) -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
18 |
15 17
|
eqtrd |
|- ( ( N = (/) /\ R e. V ) -> ( Base ` ( N Mat R ) ) = { (/) } ) |
19 |
12 18
|
eleqtrrd |
|- ( ( N = (/) /\ R e. V ) -> (/) e. ( Base ` ( N Mat R ) ) ) |
20 |
|
eqidd |
|- ( N = (/) -> (/) = (/) ) |
21 |
|
el1o |
|- ( (/) e. 1o <-> (/) = (/) ) |
22 |
20 21
|
sylibr |
|- ( N = (/) -> (/) e. 1o ) |
23 |
|
oveq2 |
|- ( N = (/) -> ( ( Base ` R ) ^m N ) = ( ( Base ` R ) ^m (/) ) ) |
24 |
|
fvex |
|- ( Base ` R ) e. _V |
25 |
|
map0e |
|- ( ( Base ` R ) e. _V -> ( ( Base ` R ) ^m (/) ) = 1o ) |
26 |
24 25
|
mp1i |
|- ( N = (/) -> ( ( Base ` R ) ^m (/) ) = 1o ) |
27 |
23 26
|
eqtrd |
|- ( N = (/) -> ( ( Base ` R ) ^m N ) = 1o ) |
28 |
22 27
|
eleqtrrd |
|- ( N = (/) -> (/) e. ( ( Base ` R ) ^m N ) ) |
29 |
28
|
adantr |
|- ( ( N = (/) /\ R e. V ) -> (/) e. ( ( Base ` R ) ^m N ) ) |
30 |
2 1 3 4 5 9 19 29
|
mavmulval |
|- ( ( N = (/) /\ R e. V ) -> ( (/) .x. (/) ) = ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) ) |
31 |
|
mpteq1 |
|- ( N = (/) -> ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = ( i e. (/) |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) ) |
32 |
31
|
adantr |
|- ( ( N = (/) /\ R e. V ) -> ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = ( i e. (/) |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) ) |
33 |
|
mpt0 |
|- ( i e. (/) |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = (/) |
34 |
32 33
|
eqtrdi |
|- ( ( N = (/) /\ R e. V ) -> ( i e. N |-> ( R gsum ( j e. N |-> ( ( i (/) j ) ( .r ` R ) ( (/) ` j ) ) ) ) ) = (/) ) |
35 |
30 34
|
eqtrd |
|- ( ( N = (/) /\ R e. V ) -> ( (/) .x. (/) ) = (/) ) |