| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mavmul0.t | 
							 |-  .x. = ( R maVecMul <. N , N >. )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( X = (/) /\ Y = (/) ) -> ( X .x. Y ) = ( (/) .x. (/) ) )  | 
						
						
							| 3 | 
							
								1
							 | 
							mavmul0 | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( (/) .x. (/) ) = (/) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan9eq | 
							 |-  ( ( ( X = (/) /\ Y = (/) ) /\ ( N = (/) /\ R e. V ) ) -> ( X .x. Y ) = (/) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` R ) = ( .r ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							simpr | 
							 |-  ( ( N = (/) /\ R e. V ) -> R e. V )  | 
						
						
							| 8 | 
							
								
							 | 
							0fi | 
							 |-  (/) e. Fin  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							 |-  ( N = (/) -> ( N e. Fin <-> (/) e. Fin ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpbiri | 
							 |-  ( N = (/) -> N e. Fin )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( N = (/) /\ R e. V ) -> N e. Fin )  | 
						
						
							| 12 | 
							
								1 5 6 7 11 11
							 | 
							mvmulfval | 
							 |-  ( ( N = (/) /\ R e. V ) -> .x. = ( i e. ( ( Base ` R ) ^m ( N X. N ) ) , j e. ( ( Base ` R ) ^m N ) |-> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							dmeqd | 
							 |-  ( ( N = (/) /\ R e. V ) -> dom .x. = dom ( i e. ( ( Base ` R ) ^m ( N X. N ) ) , j e. ( ( Base ` R ) ^m N ) |-> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 15 | 
							
								
							 | 
							eleq1 | 
							 |-  ( N = (/) -> ( N e. _V <-> (/) e. _V ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpbiri | 
							 |-  ( N = (/) -> N e. _V )  | 
						
						
							| 17 | 
							
								16
							 | 
							mptexd | 
							 |-  ( N = (/) -> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) e. _V )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) e. _V )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ( N = (/) /\ R e. V ) /\ ( i e. ( ( Base ` R ) ^m ( N X. N ) ) /\ j e. ( ( Base ` R ) ^m N ) ) ) -> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) e. _V )  | 
						
						
							| 20 | 
							
								19
							 | 
							ralrimivva | 
							 |-  ( ( N = (/) /\ R e. V ) -> A. i e. ( ( Base ` R ) ^m ( N X. N ) ) A. j e. ( ( Base ` R ) ^m N ) ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) e. _V )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( i e. ( ( Base ` R ) ^m ( N X. N ) ) , j e. ( ( Base ` R ) ^m N ) |-> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) ) = ( i e. ( ( Base ` R ) ^m ( N X. N ) ) , j e. ( ( Base ` R ) ^m N ) |-> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							dmmpoga | 
							 |-  ( A. i e. ( ( Base ` R ) ^m ( N X. N ) ) A. j e. ( ( Base ` R ) ^m N ) ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) e. _V -> dom ( i e. ( ( Base ` R ) ^m ( N X. N ) ) , j e. ( ( Base ` R ) ^m N ) |-> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) ) = ( ( ( Base ` R ) ^m ( N X. N ) ) X. ( ( Base ` R ) ^m N ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							syl | 
							 |-  ( ( N = (/) /\ R e. V ) -> dom ( i e. ( ( Base ` R ) ^m ( N X. N ) ) , j e. ( ( Base ` R ) ^m N ) |-> ( k e. N |-> ( R gsum ( l e. N |-> ( ( k i l ) ( .r ` R ) ( j ` l ) ) ) ) ) ) = ( ( ( Base ` R ) ^m ( N X. N ) ) X. ( ( Base ` R ) ^m N ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							id | 
							 |-  ( N = (/) -> N = (/) )  | 
						
						
							| 25 | 
							
								24 24
							 | 
							xpeq12d | 
							 |-  ( N = (/) -> ( N X. N ) = ( (/) X. (/) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							0xp | 
							 |-  ( (/) X. (/) ) = (/)  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eqtrdi | 
							 |-  ( N = (/) -> ( N X. N ) = (/) )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq2d | 
							 |-  ( N = (/) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( ( Base ` R ) ^m (/) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fvex | 
							 |-  ( Base ` R ) e. _V  | 
						
						
							| 30 | 
							
								
							 | 
							map0e | 
							 |-  ( ( Base ` R ) e. _V -> ( ( Base ` R ) ^m (/) ) = 1o )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							mp1i | 
							 |-  ( N = (/) -> ( ( Base ` R ) ^m (/) ) = 1o )  | 
						
						
							| 32 | 
							
								28 31
							 | 
							eqtrd | 
							 |-  ( N = (/) -> ( ( Base ` R ) ^m ( N X. N ) ) = 1o )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantr | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( ( Base ` R ) ^m ( N X. N ) ) = 1o )  | 
						
						
							| 34 | 
							
								
							 | 
							df1o2 | 
							 |-  1o = { (/) } | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrdi | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( ( Base ` R ) ^m ( N X. N ) ) = { (/) } ) | 
						
						
							| 36 | 
							
								
							 | 
							oveq2 | 
							 |-  ( N = (/) -> ( ( Base ` R ) ^m N ) = ( ( Base ` R ) ^m (/) ) )  | 
						
						
							| 37 | 
							
								29 30
							 | 
							mp1i | 
							 |-  ( R e. V -> ( ( Base ` R ) ^m (/) ) = 1o )  | 
						
						
							| 38 | 
							
								37 34
							 | 
							eqtrdi | 
							 |-  ( R e. V -> ( ( Base ` R ) ^m (/) ) = { (/) } ) | 
						
						
							| 39 | 
							
								36 38
							 | 
							sylan9eq | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( ( Base ` R ) ^m N ) = { (/) } ) | 
						
						
							| 40 | 
							
								35 39
							 | 
							xpeq12d | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( ( ( Base ` R ) ^m ( N X. N ) ) X. ( ( Base ` R ) ^m N ) ) = ( { (/) } X. { (/) } ) ) | 
						
						
							| 41 | 
							
								13 23 40
							 | 
							3eqtrd | 
							 |-  ( ( N = (/) /\ R e. V ) -> dom .x. = ( { (/) } X. { (/) } ) ) | 
						
						
							| 42 | 
							
								
							 | 
							elsni | 
							 |-  ( X e. { (/) } -> X = (/) ) | 
						
						
							| 43 | 
							
								
							 | 
							elsni | 
							 |-  ( Y e. { (/) } -> Y = (/) ) | 
						
						
							| 44 | 
							
								42 43
							 | 
							anim12i | 
							 |-  ( ( X e. { (/) } /\ Y e. { (/) } ) -> ( X = (/) /\ Y = (/) ) ) | 
						
						
							| 45 | 
							
								44
							 | 
							con3i | 
							 |-  ( -. ( X = (/) /\ Y = (/) ) -> -. ( X e. { (/) } /\ Y e. { (/) } ) ) | 
						
						
							| 46 | 
							
								
							 | 
							ndmovg | 
							 |-  ( ( dom .x. = ( { (/) } X. { (/) } ) /\ -. ( X e. { (/) } /\ Y e. { (/) } ) ) -> ( X .x. Y ) = (/) ) | 
						
						
							| 47 | 
							
								41 45 46
							 | 
							syl2anr | 
							 |-  ( ( -. ( X = (/) /\ Y = (/) ) /\ ( N = (/) /\ R e. V ) ) -> ( X .x. Y ) = (/) )  | 
						
						
							| 48 | 
							
								4 47
							 | 
							pm2.61ian | 
							 |-  ( ( N = (/) /\ R e. V ) -> ( X .x. Y ) = (/) )  |