Step |
Hyp |
Ref |
Expression |
1 |
|
mavmulval.a |
|- A = ( N Mat R ) |
2 |
|
mavmulval.m |
|- .X. = ( R maVecMul <. N , N >. ) |
3 |
|
mavmulval.b |
|- B = ( Base ` R ) |
4 |
|
mavmulval.t |
|- .x. = ( .r ` R ) |
5 |
|
mavmulval.r |
|- ( ph -> R e. V ) |
6 |
|
mavmulval.n |
|- ( ph -> N e. Fin ) |
7 |
|
mavmulval.x |
|- ( ph -> X e. ( Base ` A ) ) |
8 |
|
mavmulval.y |
|- ( ph -> Y e. ( B ^m N ) ) |
9 |
|
mavmulfv.i |
|- ( ph -> I e. N ) |
10 |
1 2 3 4 5 6 7 8
|
mavmulval |
|- ( ph -> ( X .X. Y ) = ( i e. N |-> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) ) ) |
11 |
|
oveq1 |
|- ( i = I -> ( i X j ) = ( I X j ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ i = I ) -> ( i X j ) = ( I X j ) ) |
13 |
12
|
oveq1d |
|- ( ( ph /\ i = I ) -> ( ( i X j ) .x. ( Y ` j ) ) = ( ( I X j ) .x. ( Y ` j ) ) ) |
14 |
13
|
mpteq2dv |
|- ( ( ph /\ i = I ) -> ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) = ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) |
15 |
14
|
oveq2d |
|- ( ( ph /\ i = I ) -> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) = ( R gsum ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) ) |
16 |
|
ovexd |
|- ( ph -> ( R gsum ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) e. _V ) |
17 |
10 15 9 16
|
fvmptd |
|- ( ph -> ( ( X .X. Y ) ` I ) = ( R gsum ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) ) |