Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mavmumamul1.a | |- A = ( N Mat R ) |
|
| mavmumamul1.m | |- .X. = ( R maMul <. N , N , { (/) } >. ) |
||
| mavmumamul1.t | |- .x. = ( R maVecMul <. N , N >. ) |
||
| mavmumamul1.b | |- B = ( Base ` R ) |
||
| mavmumamul1.r | |- ( ph -> R e. Ring ) |
||
| mavmumamul1.n | |- ( ph -> N e. Fin ) |
||
| mavmumamul1.x | |- ( ph -> X e. ( Base ` A ) ) |
||
| mavmumamul1.y | |- ( ph -> Y e. ( B ^m N ) ) |
||
| mavmumamul1.z | |- ( ph -> Z e. ( B ^m ( N X. { (/) } ) ) ) |
||
| Assertion | mavmumamul1 | |- ( ph -> ( A. j e. N ( Y ` j ) = ( j Z (/) ) -> A. i e. N ( ( X .x. Y ) ` i ) = ( i ( X .X. Z ) (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mavmumamul1.a | |- A = ( N Mat R ) |
|
| 2 | mavmumamul1.m | |- .X. = ( R maMul <. N , N , { (/) } >. ) |
|
| 3 | mavmumamul1.t | |- .x. = ( R maVecMul <. N , N >. ) |
|
| 4 | mavmumamul1.b | |- B = ( Base ` R ) |
|
| 5 | mavmumamul1.r | |- ( ph -> R e. Ring ) |
|
| 6 | mavmumamul1.n | |- ( ph -> N e. Fin ) |
|
| 7 | mavmumamul1.x | |- ( ph -> X e. ( Base ` A ) ) |
|
| 8 | mavmumamul1.y | |- ( ph -> Y e. ( B ^m N ) ) |
|
| 9 | mavmumamul1.z | |- ( ph -> Z e. ( B ^m ( N X. { (/) } ) ) ) |
|
| 10 | 1 4 | matbas2 | |- ( ( N e. Fin /\ R e. Ring ) -> ( B ^m ( N X. N ) ) = ( Base ` A ) ) |
| 11 | 6 5 10 | syl2anc | |- ( ph -> ( B ^m ( N X. N ) ) = ( Base ` A ) ) |
| 12 | 7 11 | eleqtrrd | |- ( ph -> X e. ( B ^m ( N X. N ) ) ) |
| 13 | 2 3 4 5 6 6 12 8 9 | mvmumamul1 | |- ( ph -> ( A. j e. N ( Y ` j ) = ( j Z (/) ) -> A. i e. N ( ( X .x. Y ) ` i ) = ( i ( X .X. Z ) (/) ) ) ) |