Metamath Proof Explorer


Theorem mavmumamul1

Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses mavmumamul1.a
|- A = ( N Mat R )
mavmumamul1.m
|- .X. = ( R maMul <. N , N , { (/) } >. )
mavmumamul1.t
|- .x. = ( R maVecMul <. N , N >. )
mavmumamul1.b
|- B = ( Base ` R )
mavmumamul1.r
|- ( ph -> R e. Ring )
mavmumamul1.n
|- ( ph -> N e. Fin )
mavmumamul1.x
|- ( ph -> X e. ( Base ` A ) )
mavmumamul1.y
|- ( ph -> Y e. ( B ^m N ) )
mavmumamul1.z
|- ( ph -> Z e. ( B ^m ( N X. { (/) } ) ) )
Assertion mavmumamul1
|- ( ph -> ( A. j e. N ( Y ` j ) = ( j Z (/) ) -> A. i e. N ( ( X .x. Y ) ` i ) = ( i ( X .X. Z ) (/) ) ) )

Proof

Step Hyp Ref Expression
1 mavmumamul1.a
 |-  A = ( N Mat R )
2 mavmumamul1.m
 |-  .X. = ( R maMul <. N , N , { (/) } >. )
3 mavmumamul1.t
 |-  .x. = ( R maVecMul <. N , N >. )
4 mavmumamul1.b
 |-  B = ( Base ` R )
5 mavmumamul1.r
 |-  ( ph -> R e. Ring )
6 mavmumamul1.n
 |-  ( ph -> N e. Fin )
7 mavmumamul1.x
 |-  ( ph -> X e. ( Base ` A ) )
8 mavmumamul1.y
 |-  ( ph -> Y e. ( B ^m N ) )
9 mavmumamul1.z
 |-  ( ph -> Z e. ( B ^m ( N X. { (/) } ) ) )
10 1 4 matbas2
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( B ^m ( N X. N ) ) = ( Base ` A ) )
11 6 5 10 syl2anc
 |-  ( ph -> ( B ^m ( N X. N ) ) = ( Base ` A ) )
12 7 11 eleqtrrd
 |-  ( ph -> X e. ( B ^m ( N X. N ) ) )
13 2 3 4 5 6 6 12 8 9 mvmumamul1
 |-  ( ph -> ( A. j e. N ( Y ` j ) = ( j Z (/) ) -> A. i e. N ( ( X .x. Y ) ` i ) = ( i ( X .X. Z ) (/) ) ) )