| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  |-  ( A e. RR -> 0 e. RR ) | 
						
							| 2 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 3 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) | 
						
							| 5 | 4 | addridd |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( A + 0 ) = A ) | 
						
							| 6 |  | iftrue |  |-  ( 0 <_ A -> if ( 0 <_ A , A , 0 ) = A ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ A , A , 0 ) = A ) | 
						
							| 8 |  | le0neg2 |  |-  ( A e. RR -> ( 0 <_ A <-> -u A <_ 0 ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( A e. RR /\ 0 <_ A ) -> -u A <_ 0 ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> -u A <_ 0 ) | 
						
							| 11 |  | simpr |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> 0 <_ -u A ) | 
						
							| 12 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> -u A e. RR ) | 
						
							| 14 |  | 0re |  |-  0 e. RR | 
						
							| 15 |  | letri3 |  |-  ( ( -u A e. RR /\ 0 e. RR ) -> ( -u A = 0 <-> ( -u A <_ 0 /\ 0 <_ -u A ) ) ) | 
						
							| 16 | 13 14 15 | sylancl |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> ( -u A = 0 <-> ( -u A <_ 0 /\ 0 <_ -u A ) ) ) | 
						
							| 17 | 10 11 16 | mpbir2and |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> -u A = 0 ) | 
						
							| 18 | 17 | ifeq1da |  |-  ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ -u A , -u A , 0 ) = if ( 0 <_ -u A , 0 , 0 ) ) | 
						
							| 19 |  | ifid |  |-  if ( 0 <_ -u A , 0 , 0 ) = 0 | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) | 
						
							| 21 | 7 20 | oveq12d |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( A + 0 ) ) | 
						
							| 22 |  | absid |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) | 
						
							| 23 | 5 21 22 | 3eqtr4d |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( abs ` A ) ) | 
						
							| 24 | 3 | adantr |  |-  ( ( A e. RR /\ A <_ 0 ) -> A e. CC ) | 
						
							| 25 | 24 | negcld |  |-  ( ( A e. RR /\ A <_ 0 ) -> -u A e. CC ) | 
						
							| 26 | 25 | addlidd |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( 0 + -u A ) = -u A ) | 
						
							| 27 |  | letri3 |  |-  ( ( A e. RR /\ 0 e. RR ) -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) | 
						
							| 28 | 14 27 | mpan2 |  |-  ( A e. RR -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) | 
						
							| 29 | 28 | biimprd |  |-  ( A e. RR -> ( ( A <_ 0 /\ 0 <_ A ) -> A = 0 ) ) | 
						
							| 30 | 29 | impl |  |-  ( ( ( A e. RR /\ A <_ 0 ) /\ 0 <_ A ) -> A = 0 ) | 
						
							| 31 | 30 | ifeq1da |  |-  ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = if ( 0 <_ A , 0 , 0 ) ) | 
						
							| 32 |  | ifid |  |-  if ( 0 <_ A , 0 , 0 ) = 0 | 
						
							| 33 | 31 32 | eqtrdi |  |-  ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) | 
						
							| 34 |  | le0neg1 |  |-  ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) | 
						
							| 35 | 34 | biimpa |  |-  ( ( A e. RR /\ A <_ 0 ) -> 0 <_ -u A ) | 
						
							| 36 | 35 | iftrued |  |-  ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = -u A ) | 
						
							| 37 | 33 36 | oveq12d |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( 0 + -u A ) ) | 
						
							| 38 |  | absnid |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) | 
						
							| 39 | 26 37 38 | 3eqtr4d |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( abs ` A ) ) | 
						
							| 40 | 1 2 23 39 | lecasei |  |-  ( A e. RR -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( abs ` A ) ) |