| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  |-  ( A e. RR -> 0 e. RR ) | 
						
							| 2 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 3 |  | iftrue |  |-  ( 0 <_ A -> if ( 0 <_ A , A , 0 ) = A ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ A , A , 0 ) = A ) | 
						
							| 5 |  | 0xr |  |-  0 e. RR* | 
						
							| 6 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> -u A e. RR ) | 
						
							| 8 | 7 | rexrd |  |-  ( ( A e. RR /\ 0 <_ A ) -> -u A e. RR* ) | 
						
							| 9 |  | le0neg2 |  |-  ( A e. RR -> ( 0 <_ A <-> -u A <_ 0 ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( A e. RR /\ 0 <_ A ) -> -u A <_ 0 ) | 
						
							| 11 |  | xrmaxeq |  |-  ( ( 0 e. RR* /\ -u A e. RR* /\ -u A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) | 
						
							| 12 | 5 8 10 11 | mp3an2i |  |-  ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) | 
						
							| 13 | 4 12 | oveq12d |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = ( A - 0 ) ) | 
						
							| 14 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 15 | 14 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) | 
						
							| 16 | 15 | subid1d |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( A - 0 ) = A ) | 
						
							| 17 | 13 16 | eqtrd |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) | 
						
							| 18 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. RR /\ A <_ 0 ) -> A e. RR* ) | 
						
							| 20 |  | simpr |  |-  ( ( A e. RR /\ A <_ 0 ) -> A <_ 0 ) | 
						
							| 21 |  | xrmaxeq |  |-  ( ( 0 e. RR* /\ A e. RR* /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) | 
						
							| 22 | 5 19 20 21 | mp3an2i |  |-  ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) | 
						
							| 23 |  | le0neg1 |  |-  ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( A e. RR /\ A <_ 0 ) -> 0 <_ -u A ) | 
						
							| 25 | 24 | iftrued |  |-  ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = -u A ) | 
						
							| 26 | 22 25 | oveq12d |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = ( 0 - -u A ) ) | 
						
							| 27 |  | df-neg |  |-  -u -u A = ( 0 - -u A ) | 
						
							| 28 | 14 | adantr |  |-  ( ( A e. RR /\ A <_ 0 ) -> A e. CC ) | 
						
							| 29 | 28 | negnegd |  |-  ( ( A e. RR /\ A <_ 0 ) -> -u -u A = A ) | 
						
							| 30 | 27 29 | eqtr3id |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( 0 - -u A ) = A ) | 
						
							| 31 | 26 30 | eqtrd |  |-  ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) | 
						
							| 32 | 1 2 17 31 | lecasei |  |-  ( A e. RR -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |