Metamath Proof Explorer


Theorem max1ALT

Description: A number is less than or equal to the maximum of it and another. This version of max1 omits the B e. RR antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005)

Ref Expression
Assertion max1ALT
|- ( A e. RR -> A <_ if ( A <_ B , B , A ) )

Proof

Step Hyp Ref Expression
1 leid
 |-  ( A e. RR -> A <_ A )
2 iffalse
 |-  ( -. A <_ B -> if ( A <_ B , B , A ) = A )
3 2 breq2d
 |-  ( -. A <_ B -> ( A <_ if ( A <_ B , B , A ) <-> A <_ A ) )
4 1 3 syl5ibrcom
 |-  ( A e. RR -> ( -. A <_ B -> A <_ if ( A <_ B , B , A ) ) )
5 id
 |-  ( A <_ B -> A <_ B )
6 iftrue
 |-  ( A <_ B -> if ( A <_ B , B , A ) = B )
7 5 6 breqtrrd
 |-  ( A <_ B -> A <_ if ( A <_ B , B , A ) )
8 4 7 pm2.61d2
 |-  ( A e. RR -> A <_ if ( A <_ B , B , A ) )