Metamath Proof Explorer


Theorem mbfconstlem

Description: Lemma for mbfconst and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfconstlem
|- ( ( A e. dom vol /\ C e. RR ) -> ( `' ( A X. { C } ) " B ) e. dom vol )

Proof

Step Hyp Ref Expression
1 cnvimass
 |-  ( `' ( A X. { C } ) " B ) C_ dom ( A X. { C } )
2 1 a1i
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) C_ dom ( A X. { C } ) )
3 cnvimarndm
 |-  ( `' ( A X. { C } ) " ran ( A X. { C } ) ) = dom ( A X. { C } )
4 fconst6g
 |-  ( C e. B -> ( A X. { C } ) : A --> B )
5 4 adantl
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( A X. { C } ) : A --> B )
6 frn
 |-  ( ( A X. { C } ) : A --> B -> ran ( A X. { C } ) C_ B )
7 imass2
 |-  ( ran ( A X. { C } ) C_ B -> ( `' ( A X. { C } ) " ran ( A X. { C } ) ) C_ ( `' ( A X. { C } ) " B ) )
8 5 6 7 3syl
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " ran ( A X. { C } ) ) C_ ( `' ( A X. { C } ) " B ) )
9 3 8 eqsstrrid
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> dom ( A X. { C } ) C_ ( `' ( A X. { C } ) " B ) )
10 2 9 eqssd
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) = dom ( A X. { C } ) )
11 fconstg
 |-  ( C e. RR -> ( A X. { C } ) : A --> { C } )
12 11 ad2antlr
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( A X. { C } ) : A --> { C } )
13 12 fdmd
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> dom ( A X. { C } ) = A )
14 10 13 eqtrd
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) = A )
15 simpll
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> A e. dom vol )
16 14 15 eqeltrd
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) e. dom vol )
17 11 ad2antlr
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( A X. { C } ) : A --> { C } )
18 incom
 |-  ( { C } i^i B ) = ( B i^i { C } )
19 simpr
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> -. C e. B )
20 disjsn
 |-  ( ( B i^i { C } ) = (/) <-> -. C e. B )
21 19 20 sylibr
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( B i^i { C } ) = (/) )
22 18 21 syl5eq
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( { C } i^i B ) = (/) )
23 fimacnvdisj
 |-  ( ( ( A X. { C } ) : A --> { C } /\ ( { C } i^i B ) = (/) ) -> ( `' ( A X. { C } ) " B ) = (/) )
24 17 22 23 syl2anc
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( `' ( A X. { C } ) " B ) = (/) )
25 0mbl
 |-  (/) e. dom vol
26 24 25 eqeltrdi
 |-  ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( `' ( A X. { C } ) " B ) e. dom vol )
27 16 26 pm2.61dan
 |-  ( ( A e. dom vol /\ C e. RR ) -> ( `' ( A X. { C } ) " B ) e. dom vol )