Step |
Hyp |
Ref |
Expression |
1 |
|
cnvimass |
|- ( `' ( A X. { C } ) " B ) C_ dom ( A X. { C } ) |
2 |
1
|
a1i |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) C_ dom ( A X. { C } ) ) |
3 |
|
cnvimarndm |
|- ( `' ( A X. { C } ) " ran ( A X. { C } ) ) = dom ( A X. { C } ) |
4 |
|
fconst6g |
|- ( C e. B -> ( A X. { C } ) : A --> B ) |
5 |
4
|
adantl |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( A X. { C } ) : A --> B ) |
6 |
|
frn |
|- ( ( A X. { C } ) : A --> B -> ran ( A X. { C } ) C_ B ) |
7 |
|
imass2 |
|- ( ran ( A X. { C } ) C_ B -> ( `' ( A X. { C } ) " ran ( A X. { C } ) ) C_ ( `' ( A X. { C } ) " B ) ) |
8 |
5 6 7
|
3syl |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " ran ( A X. { C } ) ) C_ ( `' ( A X. { C } ) " B ) ) |
9 |
3 8
|
eqsstrrid |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> dom ( A X. { C } ) C_ ( `' ( A X. { C } ) " B ) ) |
10 |
2 9
|
eqssd |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) = dom ( A X. { C } ) ) |
11 |
|
fconstg |
|- ( C e. RR -> ( A X. { C } ) : A --> { C } ) |
12 |
11
|
ad2antlr |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( A X. { C } ) : A --> { C } ) |
13 |
12
|
fdmd |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> dom ( A X. { C } ) = A ) |
14 |
10 13
|
eqtrd |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) = A ) |
15 |
|
simpll |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> A e. dom vol ) |
16 |
14 15
|
eqeltrd |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) e. dom vol ) |
17 |
11
|
ad2antlr |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( A X. { C } ) : A --> { C } ) |
18 |
|
incom |
|- ( { C } i^i B ) = ( B i^i { C } ) |
19 |
|
simpr |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> -. C e. B ) |
20 |
|
disjsn |
|- ( ( B i^i { C } ) = (/) <-> -. C e. B ) |
21 |
19 20
|
sylibr |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( B i^i { C } ) = (/) ) |
22 |
18 21
|
syl5eq |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( { C } i^i B ) = (/) ) |
23 |
|
fimacnvdisj |
|- ( ( ( A X. { C } ) : A --> { C } /\ ( { C } i^i B ) = (/) ) -> ( `' ( A X. { C } ) " B ) = (/) ) |
24 |
17 22 23
|
syl2anc |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( `' ( A X. { C } ) " B ) = (/) ) |
25 |
|
0mbl |
|- (/) e. dom vol |
26 |
24 25
|
eqeltrdi |
|- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( `' ( A X. { C } ) " B ) e. dom vol ) |
27 |
16 26
|
pm2.61dan |
|- ( ( A e. dom vol /\ C e. RR ) -> ( `' ( A X. { C } ) " B ) e. dom vol ) |