Step |
Hyp |
Ref |
Expression |
1 |
|
ref |
|- Re : CC --> RR |
2 |
|
mbff |
|- ( F e. MblFn -> F : dom F --> CC ) |
3 |
|
fco |
|- ( ( Re : CC --> RR /\ F : dom F --> CC ) -> ( Re o. F ) : dom F --> RR ) |
4 |
1 2 3
|
sylancr |
|- ( F e. MblFn -> ( Re o. F ) : dom F --> RR ) |
5 |
|
fimacnv |
|- ( ( Re o. F ) : dom F --> RR -> ( `' ( Re o. F ) " RR ) = dom F ) |
6 |
4 5
|
syl |
|- ( F e. MblFn -> ( `' ( Re o. F ) " RR ) = dom F ) |
7 |
|
imaeq2 |
|- ( x = RR -> ( `' ( Re o. F ) " x ) = ( `' ( Re o. F ) " RR ) ) |
8 |
7
|
eleq1d |
|- ( x = RR -> ( ( `' ( Re o. F ) " x ) e. dom vol <-> ( `' ( Re o. F ) " RR ) e. dom vol ) ) |
9 |
|
ismbf1 |
|- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
10 |
|
simpl |
|- ( ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) -> ( `' ( Re o. F ) " x ) e. dom vol ) |
11 |
10
|
ralimi |
|- ( A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) -> A. x e. ran (,) ( `' ( Re o. F ) " x ) e. dom vol ) |
12 |
9 11
|
simplbiim |
|- ( F e. MblFn -> A. x e. ran (,) ( `' ( Re o. F ) " x ) e. dom vol ) |
13 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
14 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
15 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
16 |
14 15
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
17 |
|
mnfxr |
|- -oo e. RR* |
18 |
|
pnfxr |
|- +oo e. RR* |
19 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ -oo e. RR* /\ +oo e. RR* ) -> ( -oo (,) +oo ) e. ran (,) ) |
20 |
16 17 18 19
|
mp3an |
|- ( -oo (,) +oo ) e. ran (,) |
21 |
13 20
|
eqeltrri |
|- RR e. ran (,) |
22 |
21
|
a1i |
|- ( F e. MblFn -> RR e. ran (,) ) |
23 |
8 12 22
|
rspcdva |
|- ( F e. MblFn -> ( `' ( Re o. F ) " RR ) e. dom vol ) |
24 |
6 23
|
eqeltrrd |
|- ( F e. MblFn -> dom F e. dom vol ) |