Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mbfmptcl.1 | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
|
mbfmptcl.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
Assertion | mbfdm2 | |- ( ph -> A e. dom vol ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmptcl.1 | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
|
2 | mbfmptcl.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
3 | 2 | ralrimiva | |- ( ph -> A. x e. A B e. V ) |
4 | dmmptg | |- ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A ) |
|
5 | 3 4 | syl | |- ( ph -> dom ( x e. A |-> B ) = A ) |
6 | mbfdm | |- ( ( x e. A |-> B ) e. MblFn -> dom ( x e. A |-> B ) e. dom vol ) |
|
7 | 1 6 | syl | |- ( ph -> dom ( x e. A |-> B ) e. dom vol ) |
8 | 5 7 | eqeltrrd | |- ( ph -> A e. dom vol ) |