Metamath Proof Explorer


Theorem mbfdmssre

Description: The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion mbfdmssre
|- ( F e. MblFn -> dom F C_ RR )

Proof

Step Hyp Ref Expression
1 ismbf1
 |-  ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) )
2 1 simplbi
 |-  ( F e. MblFn -> F e. ( CC ^pm RR ) )
3 elpmi2
 |-  ( F e. ( CC ^pm RR ) -> dom F C_ RR )
4 2 3 syl
 |-  ( F e. MblFn -> dom F C_ RR )