Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
|- ( ph -> F e. MblFn ) |
2 |
|
mbfi1fseq.2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
3 |
|
mbfi1fseq.3 |
|- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
4 |
|
mbfi1fseq.4 |
|- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
5 |
1 2 3 4
|
mbfi1fseqlem2 |
|- ( A e. NN -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
6 |
5
|
adantl |
|- ( ( ph /\ A e. NN ) -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
7 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
8 |
|
simpr |
|- ( ( m e. NN /\ y e. RR ) -> y e. RR ) |
9 |
|
ffvelrn |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
10 |
2 8 9
|
syl2an |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
11 |
7 10
|
sselid |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. RR ) |
12 |
|
2nn |
|- 2 e. NN |
13 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
14 |
|
nnexpcl |
|- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
15 |
12 13 14
|
sylancr |
|- ( m e. NN -> ( 2 ^ m ) e. NN ) |
16 |
15
|
ad2antrl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN ) |
17 |
16
|
nnred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. RR ) |
18 |
11 17
|
remulcld |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) x. ( 2 ^ m ) ) e. RR ) |
19 |
|
reflcl |
|- ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
21 |
20 16
|
nndivred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
22 |
21
|
ralrimivva |
|- ( ph -> A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
23 |
3
|
fmpo |
|- ( A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR <-> J : ( NN X. RR ) --> RR ) |
24 |
22 23
|
sylib |
|- ( ph -> J : ( NN X. RR ) --> RR ) |
25 |
|
fovrn |
|- ( ( J : ( NN X. RR ) --> RR /\ A e. NN /\ x e. RR ) -> ( A J x ) e. RR ) |
26 |
24 25
|
syl3an1 |
|- ( ( ph /\ A e. NN /\ x e. RR ) -> ( A J x ) e. RR ) |
27 |
26
|
3expa |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A J x ) e. RR ) |
28 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
29 |
28
|
ad2antlr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. RR ) |
30 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
31 |
|
nnexpcl |
|- ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) |
32 |
12 30 31
|
sylancr |
|- ( A e. NN -> ( 2 ^ A ) e. NN ) |
33 |
32
|
ad2antlr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. NN ) |
34 |
|
nnre |
|- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) e. RR ) |
35 |
|
nngt0 |
|- ( ( 2 ^ A ) e. NN -> 0 < ( 2 ^ A ) ) |
36 |
34 35
|
jca |
|- ( ( 2 ^ A ) e. NN -> ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) |
37 |
33 36
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) |
38 |
|
lemul1 |
|- ( ( ( A J x ) e. RR /\ A e. RR /\ ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) -> ( ( A J x ) <_ A <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
39 |
27 29 37 38
|
syl3anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( A J x ) <_ A <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
40 |
39
|
biimpa |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) |
41 |
|
simpr |
|- ( ( m = A /\ y = x ) -> y = x ) |
42 |
41
|
fveq2d |
|- ( ( m = A /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
43 |
|
simpl |
|- ( ( m = A /\ y = x ) -> m = A ) |
44 |
43
|
oveq2d |
|- ( ( m = A /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ A ) ) |
45 |
42 44
|
oveq12d |
|- ( ( m = A /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ A ) ) ) |
46 |
45
|
fveq2d |
|- ( ( m = A /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
47 |
46 44
|
oveq12d |
|- ( ( m = A /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
48 |
|
ovex |
|- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) e. _V |
49 |
47 3 48
|
ovmpoa |
|- ( ( A e. NN /\ x e. RR ) -> ( A J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
50 |
49
|
ad4ant23 |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
51 |
50
|
oveq1d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) = ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) x. ( 2 ^ A ) ) ) |
52 |
2
|
adantr |
|- ( ( ph /\ A e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
53 |
52
|
ffvelrnda |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
54 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
55 |
53 54
|
sylib |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
56 |
55
|
simpld |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
57 |
33
|
nnred |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. RR ) |
58 |
56 57
|
remulcld |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( F ` x ) x. ( 2 ^ A ) ) e. RR ) |
59 |
33
|
nnnn0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. NN0 ) |
60 |
59
|
nn0ge0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 <_ ( 2 ^ A ) ) |
61 |
|
mulge0 |
|- ( ( ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) /\ ( ( 2 ^ A ) e. RR /\ 0 <_ ( 2 ^ A ) ) ) -> 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) |
62 |
55 57 60 61
|
syl12anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) |
63 |
|
flge0nn0 |
|- ( ( ( ( F ` x ) x. ( 2 ^ A ) ) e. RR /\ 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
64 |
58 62 63
|
syl2anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
65 |
64
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
66 |
65
|
nn0cnd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. CC ) |
67 |
33
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) e. NN ) |
68 |
67
|
nncnd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) e. CC ) |
69 |
67
|
nnne0d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) =/= 0 ) |
70 |
66 68 69
|
divcan1d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) x. ( 2 ^ A ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
71 |
51 70
|
eqtrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
72 |
71 65
|
eqeltrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. NN0 ) |
73 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
74 |
72 73
|
eleqtrdi |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) ) |
75 |
|
nnmulcl |
|- ( ( A e. NN /\ ( 2 ^ A ) e. NN ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
76 |
32 75
|
mpdan |
|- ( A e. NN -> ( A x. ( 2 ^ A ) ) e. NN ) |
77 |
76
|
ad2antlr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
78 |
77
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
79 |
78
|
nnzd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A x. ( 2 ^ A ) ) e. ZZ ) |
80 |
|
elfz5 |
|- ( ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) /\ ( A x. ( 2 ^ A ) ) e. ZZ ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
81 |
74 79 80
|
syl2anc |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
82 |
40 81
|
mpbird |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
83 |
|
oveq1 |
|- ( m = ( ( A J x ) x. ( 2 ^ A ) ) -> ( m / ( 2 ^ A ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
84 |
|
eqid |
|- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) = ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) |
85 |
|
ovex |
|- ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) e. _V |
86 |
83 84 85
|
fvmpt |
|- ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
87 |
82 86
|
syl |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
88 |
27
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. RR ) |
89 |
88
|
recnd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. CC ) |
90 |
89 68 69
|
divcan4d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) = ( A J x ) ) |
91 |
87 90
|
eqtrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( A J x ) ) |
92 |
|
elfznn0 |
|- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> m e. NN0 ) |
93 |
92
|
nn0red |
|- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> m e. RR ) |
94 |
32
|
adantl |
|- ( ( ph /\ A e. NN ) -> ( 2 ^ A ) e. NN ) |
95 |
|
nndivre |
|- ( ( m e. RR /\ ( 2 ^ A ) e. NN ) -> ( m / ( 2 ^ A ) ) e. RR ) |
96 |
93 94 95
|
syl2anr |
|- ( ( ( ph /\ A e. NN ) /\ m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( m / ( 2 ^ A ) ) e. RR ) |
97 |
96
|
fmpttd |
|- ( ( ph /\ A e. NN ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) : ( 0 ... ( A x. ( 2 ^ A ) ) ) --> RR ) |
98 |
97
|
ffnd |
|- ( ( ph /\ A e. NN ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
99 |
98
|
adantr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
100 |
99
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
101 |
|
fnfvelrn |
|- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
102 |
100 82 101
|
syl2anc |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
103 |
91 102
|
eqeltrrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
104 |
77
|
nnnn0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. NN0 ) |
105 |
104 73
|
eleqtrdi |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) ) |
106 |
|
eluzfz2 |
|- ( ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) -> ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
107 |
105 106
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
108 |
|
oveq1 |
|- ( m = ( A x. ( 2 ^ A ) ) -> ( m / ( 2 ^ A ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
109 |
|
ovex |
|- ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) e. _V |
110 |
108 84 109
|
fvmpt |
|- ( ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
111 |
107 110
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
112 |
29
|
recnd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. CC ) |
113 |
33
|
nncnd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. CC ) |
114 |
33
|
nnne0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) =/= 0 ) |
115 |
112 113 114
|
divcan4d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) = A ) |
116 |
111 115
|
eqtrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = A ) |
117 |
|
fnfvelrn |
|- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
118 |
99 107 117
|
syl2anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
119 |
116 118
|
eqeltrrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
120 |
119
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ -. ( A J x ) <_ A ) -> A e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
121 |
103 120
|
ifclda |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> if ( ( A J x ) <_ A , ( A J x ) , A ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
122 |
|
eluzfz1 |
|- ( ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
123 |
105 122
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
124 |
|
oveq1 |
|- ( m = 0 -> ( m / ( 2 ^ A ) ) = ( 0 / ( 2 ^ A ) ) ) |
125 |
|
ovex |
|- ( 0 / ( 2 ^ A ) ) e. _V |
126 |
124 84 125
|
fvmpt |
|- ( 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = ( 0 / ( 2 ^ A ) ) ) |
127 |
123 126
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = ( 0 / ( 2 ^ A ) ) ) |
128 |
|
nncn |
|- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) e. CC ) |
129 |
|
nnne0 |
|- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) =/= 0 ) |
130 |
128 129
|
div0d |
|- ( ( 2 ^ A ) e. NN -> ( 0 / ( 2 ^ A ) ) = 0 ) |
131 |
33 130
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 0 / ( 2 ^ A ) ) = 0 ) |
132 |
127 131
|
eqtrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = 0 ) |
133 |
|
fnfvelrn |
|- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
134 |
99 123 133
|
syl2anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
135 |
132 134
|
eqeltrrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
136 |
121 135
|
ifcld |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
137 |
6 136
|
fmpt3d |
|- ( ( ph /\ A e. NN ) -> ( G ` A ) : RR --> ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |