Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
|- ( ph -> F e. MblFn ) |
2 |
|
mbfi1fseq.2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
3 |
|
mbfi1fseq.3 |
|- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
4 |
|
mbfi1fseq.4 |
|- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
5 |
|
reex |
|- RR e. _V |
6 |
5
|
mptex |
|- ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) e. _V |
7 |
6 4
|
fnmpti |
|- G Fn NN |
8 |
7
|
a1i |
|- ( ph -> G Fn NN ) |
9 |
1 2 3 4
|
mbfi1fseqlem3 |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) : RR --> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
10 |
|
elfznn0 |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. NN0 ) |
11 |
10
|
nn0red |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. RR ) |
12 |
|
2nn |
|- 2 e. NN |
13 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
14 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
15 |
12 13 14
|
sylancr |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
16 |
15
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. NN ) |
17 |
|
nndivre |
|- ( ( m e. RR /\ ( 2 ^ n ) e. NN ) -> ( m / ( 2 ^ n ) ) e. RR ) |
18 |
11 16 17
|
syl2anr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( m / ( 2 ^ n ) ) e. RR ) |
19 |
18
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) --> RR ) |
20 |
19
|
frnd |
|- ( ( ph /\ n e. NN ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) C_ RR ) |
21 |
9 20
|
fssd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) : RR --> RR ) |
22 |
|
fzfid |
|- ( ( ph /\ n e. NN ) -> ( 0 ... ( n x. ( 2 ^ n ) ) ) e. Fin ) |
23 |
19
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) Fn ( 0 ... ( n x. ( 2 ^ n ) ) ) ) |
24 |
|
dffn4 |
|- ( ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) Fn ( 0 ... ( n x. ( 2 ^ n ) ) ) <-> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
25 |
23 24
|
sylib |
|- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
26 |
|
fofi |
|- ( ( ( 0 ... ( n x. ( 2 ^ n ) ) ) e. Fin /\ ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) e. Fin ) |
27 |
22 25 26
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) e. Fin ) |
28 |
9
|
frnd |
|- ( ( ph /\ n e. NN ) -> ran ( G ` n ) C_ ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
29 |
27 28
|
ssfid |
|- ( ( ph /\ n e. NN ) -> ran ( G ` n ) e. Fin ) |
30 |
1 2 3 4
|
mbfi1fseqlem2 |
|- ( n e. NN -> ( G ` n ) = ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ) |
31 |
30
|
fveq1d |
|- ( n e. NN -> ( ( G ` n ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) ) |
32 |
31
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) ) |
33 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) |
34 |
|
ovex |
|- ( n J x ) e. _V |
35 |
|
vex |
|- n e. _V |
36 |
34 35
|
ifex |
|- if ( ( n J x ) <_ n , ( n J x ) , n ) e. _V |
37 |
|
c0ex |
|- 0 e. _V |
38 |
36 37
|
ifex |
|- if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. _V |
39 |
|
eqid |
|- ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
40 |
39
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. _V ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
41 |
33 38 40
|
sylancl |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
42 |
32 41
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
43 |
42
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
44 |
43
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) |
45 |
|
eldifsni |
|- ( k e. ( ran ( G ` n ) \ { 0 } ) -> k =/= 0 ) |
46 |
45
|
ad2antlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k =/= 0 ) |
47 |
|
neeq1 |
|- ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 <-> k =/= 0 ) ) |
48 |
46 47
|
syl5ibrcom |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 ) ) |
49 |
|
iffalse |
|- ( -. x e. ( -u n [,] n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = 0 ) |
50 |
49
|
necon1ai |
|- ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 -> x e. ( -u n [,] n ) ) |
51 |
48 50
|
syl6 |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> x e. ( -u n [,] n ) ) ) |
52 |
51
|
pm4.71rd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> ( x e. ( -u n [,] n ) /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) ) |
53 |
|
iftrue |
|- ( x e. ( -u n [,] n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = if ( ( n J x ) <_ n , ( n J x ) , n ) ) |
54 |
53
|
eqeq1d |
|- ( x e. ( -u n [,] n ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) ) |
55 |
|
simpllr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> n e. NN ) |
56 |
55
|
nnred |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> n e. RR ) |
57 |
56
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> n e. RR ) |
58 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
59 |
|
simpr |
|- ( ( m e. NN /\ y e. RR ) -> y e. RR ) |
60 |
|
ffvelrn |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
61 |
2 59 60
|
syl2an |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
62 |
58 61
|
sselid |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. RR ) |
63 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
64 |
|
nnexpcl |
|- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
65 |
12 63 64
|
sylancr |
|- ( m e. NN -> ( 2 ^ m ) e. NN ) |
66 |
65
|
ad2antrl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN ) |
67 |
66
|
nnred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. RR ) |
68 |
62 67
|
remulcld |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) x. ( 2 ^ m ) ) e. RR ) |
69 |
|
reflcl |
|- ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
70 |
68 69
|
syl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
71 |
70 66
|
nndivred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
72 |
71
|
ralrimivva |
|- ( ph -> A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
73 |
3
|
fmpo |
|- ( A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR <-> J : ( NN X. RR ) --> RR ) |
74 |
72 73
|
sylib |
|- ( ph -> J : ( NN X. RR ) --> RR ) |
75 |
|
fovrn |
|- ( ( J : ( NN X. RR ) --> RR /\ n e. NN /\ x e. RR ) -> ( n J x ) e. RR ) |
76 |
74 75
|
syl3an1 |
|- ( ( ph /\ n e. NN /\ x e. RR ) -> ( n J x ) e. RR ) |
77 |
76
|
3expa |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( n J x ) e. RR ) |
78 |
77
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n J x ) e. RR ) |
79 |
78
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n J x ) e. RR ) |
80 |
|
lemin |
|- ( ( n e. RR /\ ( n J x ) e. RR /\ n e. RR ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
81 |
57 79 57 80
|
syl3anc |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
82 |
79 57
|
ifcld |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR ) |
83 |
82 57
|
letri3d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = n <-> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) ) |
84 |
|
simpr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> k = n ) |
85 |
84
|
eqeq2d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> if ( ( n J x ) <_ n , ( n J x ) , n ) = n ) ) |
86 |
|
min2 |
|- ( ( ( n J x ) e. RR /\ n e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
87 |
79 57 86
|
syl2anc |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
88 |
87
|
biantrurd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) ) |
89 |
83 85 88
|
3bitr4d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) |
90 |
57
|
leidd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> n <_ n ) |
91 |
90
|
biantrud |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ ( n J x ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
92 |
81 89 91
|
3bitr4d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> n <_ ( n J x ) ) ) |
93 |
|
breq1 |
|- ( k = n -> ( k <_ ( F ` x ) <-> n <_ ( F ` x ) ) ) |
94 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
95 |
94
|
ffvelrnda |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
96 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
97 |
95 96
|
sylib |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
98 |
97
|
simpld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
99 |
98
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
100 |
55 15
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. NN ) |
101 |
100
|
nnred |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. RR ) |
102 |
99 101
|
remulcld |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) x. ( 2 ^ n ) ) e. RR ) |
103 |
|
reflcl |
|- ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR ) |
104 |
102 103
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR ) |
105 |
100
|
nngt0d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> 0 < ( 2 ^ n ) ) |
106 |
|
lemuldiv |
|- ( ( n e. RR /\ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
107 |
56 104 101 105 106
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
108 |
|
lemul1 |
|- ( ( n e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
109 |
56 99 101 105 108
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
110 |
|
nnmulcl |
|- ( ( n e. NN /\ ( 2 ^ n ) e. NN ) -> ( n x. ( 2 ^ n ) ) e. NN ) |
111 |
55 15 110
|
syl2anc2 |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n x. ( 2 ^ n ) ) e. NN ) |
112 |
111
|
nnzd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n x. ( 2 ^ n ) ) e. ZZ ) |
113 |
|
flge |
|- ( ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR /\ ( n x. ( 2 ^ n ) ) e. ZZ ) -> ( ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
114 |
102 112 113
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
115 |
109 114
|
bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
116 |
|
simpr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> x e. RR ) |
117 |
|
simpr |
|- ( ( m = n /\ y = x ) -> y = x ) |
118 |
117
|
fveq2d |
|- ( ( m = n /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
119 |
|
simpl |
|- ( ( m = n /\ y = x ) -> m = n ) |
120 |
119
|
oveq2d |
|- ( ( m = n /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ n ) ) |
121 |
118 120
|
oveq12d |
|- ( ( m = n /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ n ) ) ) |
122 |
121
|
fveq2d |
|- ( ( m = n /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
123 |
122 120
|
oveq12d |
|- ( ( m = n /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
124 |
|
ovex |
|- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. _V |
125 |
123 3 124
|
ovmpoa |
|- ( ( n e. NN /\ x e. RR ) -> ( n J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
126 |
55 116 125
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
127 |
126
|
breq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( n J x ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
128 |
107 115 127
|
3bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> n <_ ( n J x ) ) ) |
129 |
93 128
|
sylan9bbr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( k <_ ( F ` x ) <-> n <_ ( n J x ) ) ) |
130 |
116
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> x e. RR ) |
131 |
|
iftrue |
|- ( k = n -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = RR ) |
132 |
131
|
adantl |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = RR ) |
133 |
130 132
|
eleqtrrd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
134 |
133
|
biantrurd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( k <_ ( F ` x ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
135 |
92 129 134
|
3bitr2d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
136 |
28
|
ssdifssd |
|- ( ( ph /\ n e. NN ) -> ( ran ( G ` n ) \ { 0 } ) C_ ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
137 |
136
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
138 |
|
eqid |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) = ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) |
139 |
138
|
rnmpt |
|- ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) = { k | E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) } |
140 |
139
|
abeq2i |
|- ( k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) <-> E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) ) |
141 |
|
elfzelz |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. ZZ ) |
142 |
141
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> m e. ZZ ) |
143 |
142
|
zcnd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> m e. CC ) |
144 |
15
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) e. NN ) |
145 |
144
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) e. CC ) |
146 |
144
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) =/= 0 ) |
147 |
143 145 146
|
divcan1d |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) = m ) |
148 |
147 142
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) e. ZZ ) |
149 |
|
oveq1 |
|- ( k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) = ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) ) |
150 |
149
|
eleq1d |
|- ( k = ( m / ( 2 ^ n ) ) -> ( ( k x. ( 2 ^ n ) ) e. ZZ <-> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) e. ZZ ) ) |
151 |
148 150
|
syl5ibrcom |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
152 |
151
|
rexlimdva |
|- ( ( ph /\ n e. NN ) -> ( E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
153 |
140 152
|
syl5bi |
|- ( ( ph /\ n e. NN ) -> ( k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
154 |
153
|
imp |
|- ( ( ( ph /\ n e. NN ) /\ k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
155 |
137 154
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
156 |
155
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
157 |
|
flbi |
|- ( ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR /\ ( k x. ( 2 ^ n ) ) e. ZZ ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
158 |
102 156 157
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
159 |
158
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
160 |
|
neeq1 |
|- ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n <-> k =/= n ) ) |
161 |
160
|
biimparc |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n ) |
162 |
|
iffalse |
|- ( -. ( n J x ) <_ n -> if ( ( n J x ) <_ n , ( n J x ) , n ) = n ) |
163 |
162
|
necon1ai |
|- ( if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n -> ( n J x ) <_ n ) |
164 |
161 163
|
syl |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( n J x ) <_ n ) |
165 |
164
|
iftrued |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = ( n J x ) ) |
166 |
|
simpr |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) |
167 |
165 166
|
eqtr3d |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( n J x ) = k ) |
168 |
167 164
|
eqbrtrrd |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> k <_ n ) |
169 |
168 167
|
jca |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( k <_ n /\ ( n J x ) = k ) ) |
170 |
169
|
ex |
|- ( k =/= n -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k -> ( k <_ n /\ ( n J x ) = k ) ) ) |
171 |
|
breq1 |
|- ( ( n J x ) = k -> ( ( n J x ) <_ n <-> k <_ n ) ) |
172 |
171
|
biimparc |
|- ( ( k <_ n /\ ( n J x ) = k ) -> ( n J x ) <_ n ) |
173 |
172
|
iftrued |
|- ( ( k <_ n /\ ( n J x ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = ( n J x ) ) |
174 |
|
simpr |
|- ( ( k <_ n /\ ( n J x ) = k ) -> ( n J x ) = k ) |
175 |
173 174
|
eqtrd |
|- ( ( k <_ n /\ ( n J x ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) |
176 |
170 175
|
impbid1 |
|- ( k =/= n -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
177 |
176
|
adantl |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
178 |
|
eldifi |
|- ( k e. ( ran ( G ` n ) \ { 0 } ) -> k e. ran ( G ` n ) ) |
179 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
180 |
179
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> n e. RR ) |
181 |
77 180 86
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
182 |
13
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> n e. NN0 ) |
183 |
182
|
nn0ge0d |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 <_ n ) |
184 |
|
breq1 |
|- ( if ( ( n J x ) <_ n , ( n J x ) , n ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) ) |
185 |
|
breq1 |
|- ( 0 = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) -> ( 0 <_ n <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) ) |
186 |
184 185
|
ifboth |
|- ( ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ 0 <_ n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) |
187 |
181 183 186
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) |
188 |
42 187
|
eqbrtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) <_ n ) |
189 |
188
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. x e. RR ( ( G ` n ) ` x ) <_ n ) |
190 |
9
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) Fn RR ) |
191 |
|
breq1 |
|- ( k = ( ( G ` n ) ` x ) -> ( k <_ n <-> ( ( G ` n ) ` x ) <_ n ) ) |
192 |
191
|
ralrn |
|- ( ( G ` n ) Fn RR -> ( A. k e. ran ( G ` n ) k <_ n <-> A. x e. RR ( ( G ` n ) ` x ) <_ n ) ) |
193 |
190 192
|
syl |
|- ( ( ph /\ n e. NN ) -> ( A. k e. ran ( G ` n ) k <_ n <-> A. x e. RR ( ( G ` n ) ` x ) <_ n ) ) |
194 |
189 193
|
mpbird |
|- ( ( ph /\ n e. NN ) -> A. k e. ran ( G ` n ) k <_ n ) |
195 |
194
|
r19.21bi |
|- ( ( ( ph /\ n e. NN ) /\ k e. ran ( G ` n ) ) -> k <_ n ) |
196 |
178 195
|
sylan2 |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k <_ n ) |
197 |
196
|
ad2antrr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> k <_ n ) |
198 |
197
|
biantrurd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( n J x ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
199 |
126
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n J x ) = k <-> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) = k ) ) |
200 |
104
|
recnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. CC ) |
201 |
28 20
|
sstrd |
|- ( ( ph /\ n e. NN ) -> ran ( G ` n ) C_ RR ) |
202 |
201
|
ssdifssd |
|- ( ( ph /\ n e. NN ) -> ( ran ( G ` n ) \ { 0 } ) C_ RR ) |
203 |
202
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k e. RR ) |
204 |
203
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. RR ) |
205 |
204
|
recnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. CC ) |
206 |
100
|
nncnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. CC ) |
207 |
100
|
nnne0d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) =/= 0 ) |
208 |
200 205 206 207
|
divmul3d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
209 |
199 208
|
bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n J x ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
210 |
209
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( n J x ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
211 |
177 198 210
|
3bitr2d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
212 |
|
ifnefalse |
|- ( k =/= n -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
213 |
212
|
eleq2d |
|- ( k =/= n -> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) <-> x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
214 |
100
|
nnrecred |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 1 / ( 2 ^ n ) ) e. RR ) |
215 |
204 214
|
readdcld |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k + ( 1 / ( 2 ^ n ) ) ) e. RR ) |
216 |
215
|
rexrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k + ( 1 / ( 2 ^ n ) ) ) e. RR* ) |
217 |
|
elioomnf |
|- ( ( k + ( 1 / ( 2 ^ n ) ) ) e. RR* -> ( ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
218 |
216 217
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
219 |
94
|
ad2antrr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> F : RR --> ( 0 [,) +oo ) ) |
220 |
219
|
ffnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> F Fn RR ) |
221 |
|
elpreima |
|- ( F Fn RR -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
222 |
220 221
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
223 |
116 222
|
mpbirand |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
224 |
99
|
biantrurd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
225 |
218 223 224
|
3bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) |
226 |
|
ltmul1 |
|- ( ( ( F ` x ) e. RR /\ ( k + ( 1 / ( 2 ^ n ) ) ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) ) ) |
227 |
99 215 101 105 226
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) ) ) |
228 |
214
|
recnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 1 / ( 2 ^ n ) ) e. CC ) |
229 |
206 207
|
recid2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( 1 / ( 2 ^ n ) ) x. ( 2 ^ n ) ) = 1 ) |
230 |
229
|
oveq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( k x. ( 2 ^ n ) ) + ( ( 1 / ( 2 ^ n ) ) x. ( 2 ^ n ) ) ) = ( ( k x. ( 2 ^ n ) ) + 1 ) ) |
231 |
205 206 228 230
|
joinlmuladdmuld |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) = ( ( k x. ( 2 ^ n ) ) + 1 ) ) |
232 |
231
|
breq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
233 |
225 227 232
|
3bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
234 |
213 233
|
sylan9bbr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
235 |
|
lemul1 |
|- ( ( k e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
236 |
204 99 101 105 235
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
237 |
236
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
238 |
234 237
|
anbi12d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) <-> ( ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) /\ ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
239 |
238
|
biancomd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
240 |
159 211 239
|
3bitr4d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
241 |
135 240
|
pm2.61dane |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
242 |
|
eldif |
|- ( x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ -. x e. ( `' F " ( -oo (,) k ) ) ) ) |
243 |
204
|
rexrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. RR* ) |
244 |
|
elioomnf |
|- ( k e. RR* -> ( ( F ` x ) e. ( -oo (,) k ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
245 |
243 244
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) k ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
246 |
|
elpreima |
|- ( F Fn RR -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) k ) ) ) ) |
247 |
220 246
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) k ) ) ) ) |
248 |
116 247
|
mpbirand |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( F ` x ) e. ( -oo (,) k ) ) ) |
249 |
99
|
biantrurd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < k <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
250 |
245 248 249
|
3bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( F ` x ) < k ) ) |
251 |
250
|
notbid |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( -. x e. ( `' F " ( -oo (,) k ) ) <-> -. ( F ` x ) < k ) ) |
252 |
204 99
|
lenltd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k <_ ( F ` x ) <-> -. ( F ` x ) < k ) ) |
253 |
251 252
|
bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( -. x e. ( `' F " ( -oo (,) k ) ) <-> k <_ ( F ` x ) ) ) |
254 |
253
|
anbi2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ -. x e. ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
255 |
242 254
|
syl5bb |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
256 |
241 255
|
bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
257 |
54 256
|
sylan9bbr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ x e. ( -u n [,] n ) ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
258 |
257
|
pm5.32da |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( x e. ( -u n [,] n ) /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
259 |
44 52 258
|
3bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
260 |
259
|
pm5.32da |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. RR /\ ( ( G ` n ) ` x ) = k ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
261 |
21
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) : RR --> RR ) |
262 |
261
|
ffnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) Fn RR ) |
263 |
|
fniniseg |
|- ( ( G ` n ) Fn RR -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
264 |
262 263
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
265 |
|
elin |
|- ( x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
266 |
179
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> n e. RR ) |
267 |
266
|
renegcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> -u n e. RR ) |
268 |
|
iccmbl |
|- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) e. dom vol ) |
269 |
267 266 268
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) e. dom vol ) |
270 |
|
mblss |
|- ( ( -u n [,] n ) e. dom vol -> ( -u n [,] n ) C_ RR ) |
271 |
269 270
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) C_ RR ) |
272 |
271
|
sseld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( -u n [,] n ) -> x e. RR ) ) |
273 |
272
|
adantrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) -> x e. RR ) ) |
274 |
273
|
pm4.71rd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
275 |
265 274
|
syl5bb |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
276 |
260 264 275
|
3bitr4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
277 |
276
|
eqrdv |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) = ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
278 |
|
rembl |
|- RR e. dom vol |
279 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
280 |
2 58 279
|
sylancl |
|- ( ph -> F : RR --> RR ) |
281 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) |
282 |
1 280 281
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) |
283 |
|
ifcl |
|- ( ( RR e. dom vol /\ ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol ) |
284 |
278 282 283
|
sylancr |
|- ( ph -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol ) |
285 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( -oo (,) k ) ) e. dom vol ) |
286 |
1 280 285
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) k ) ) e. dom vol ) |
287 |
|
difmbl |
|- ( ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol /\ ( `' F " ( -oo (,) k ) ) e. dom vol ) -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
288 |
284 286 287
|
syl2anc |
|- ( ph -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
289 |
288
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
290 |
|
inmbl |
|- ( ( ( -u n [,] n ) e. dom vol /\ ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) -> ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) e. dom vol ) |
291 |
269 289 290
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) e. dom vol ) |
292 |
277 291
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) e. dom vol ) |
293 |
|
mblvol |
|- ( ( `' ( G ` n ) " { k } ) e. dom vol -> ( vol ` ( `' ( G ` n ) " { k } ) ) = ( vol* ` ( `' ( G ` n ) " { k } ) ) ) |
294 |
292 293
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( `' ( G ` n ) " { k } ) ) = ( vol* ` ( `' ( G ` n ) " { k } ) ) ) |
295 |
190
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) Fn RR ) |
296 |
295 263
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
297 |
77 180
|
ifcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR ) |
298 |
|
0re |
|- 0 e. RR |
299 |
|
ifcl |
|- ( ( if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR /\ 0 e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) |
300 |
297 298 299
|
sylancl |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) |
301 |
39
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
302 |
33 300 301
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
303 |
32 302
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
304 |
303
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
305 |
304
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) |
306 |
305 51
|
sylbid |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k -> x e. ( -u n [,] n ) ) ) |
307 |
306
|
expimpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. RR /\ ( ( G ` n ) ` x ) = k ) -> x e. ( -u n [,] n ) ) ) |
308 |
296 307
|
sylbid |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) -> x e. ( -u n [,] n ) ) ) |
309 |
308
|
ssrdv |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) C_ ( -u n [,] n ) ) |
310 |
|
iccssre |
|- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) C_ RR ) |
311 |
267 266 310
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) C_ RR ) |
312 |
|
mblvol |
|- ( ( -u n [,] n ) e. dom vol -> ( vol ` ( -u n [,] n ) ) = ( vol* ` ( -u n [,] n ) ) ) |
313 |
269 312
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( -u n [,] n ) ) = ( vol* ` ( -u n [,] n ) ) ) |
314 |
|
iccvolcl |
|- ( ( -u n e. RR /\ n e. RR ) -> ( vol ` ( -u n [,] n ) ) e. RR ) |
315 |
267 266 314
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( -u n [,] n ) ) e. RR ) |
316 |
313 315
|
eqeltrrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol* ` ( -u n [,] n ) ) e. RR ) |
317 |
|
ovolsscl |
|- ( ( ( `' ( G ` n ) " { k } ) C_ ( -u n [,] n ) /\ ( -u n [,] n ) C_ RR /\ ( vol* ` ( -u n [,] n ) ) e. RR ) -> ( vol* ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
318 |
309 311 316 317
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol* ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
319 |
294 318
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
320 |
21 29 292 319
|
i1fd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. dom S.1 ) |
321 |
320
|
ralrimiva |
|- ( ph -> A. n e. NN ( G ` n ) e. dom S.1 ) |
322 |
|
ffnfv |
|- ( G : NN --> dom S.1 <-> ( G Fn NN /\ A. n e. NN ( G ` n ) e. dom S.1 ) ) |
323 |
8 321 322
|
sylanbrc |
|- ( ph -> G : NN --> dom S.1 ) |