| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfi1fseq.1 |
|- ( ph -> F e. MblFn ) |
| 2 |
|
mbfi1fseq.2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
| 3 |
|
mbfi1fseq.3 |
|- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
| 4 |
|
mbfi1fseq.4 |
|- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
| 5 |
|
reex |
|- RR e. _V |
| 6 |
5
|
mptex |
|- ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) e. _V |
| 7 |
6 4
|
fnmpti |
|- G Fn NN |
| 8 |
7
|
a1i |
|- ( ph -> G Fn NN ) |
| 9 |
1 2 3 4
|
mbfi1fseqlem3 |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) : RR --> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 10 |
|
elfznn0 |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. NN0 ) |
| 11 |
10
|
nn0red |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. RR ) |
| 12 |
|
2nn |
|- 2 e. NN |
| 13 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 14 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
| 15 |
12 13 14
|
sylancr |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. NN ) |
| 17 |
|
nndivre |
|- ( ( m e. RR /\ ( 2 ^ n ) e. NN ) -> ( m / ( 2 ^ n ) ) e. RR ) |
| 18 |
11 16 17
|
syl2anr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( m / ( 2 ^ n ) ) e. RR ) |
| 19 |
18
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) --> RR ) |
| 20 |
19
|
frnd |
|- ( ( ph /\ n e. NN ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) C_ RR ) |
| 21 |
9 20
|
fssd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) : RR --> RR ) |
| 22 |
|
fzfid |
|- ( ( ph /\ n e. NN ) -> ( 0 ... ( n x. ( 2 ^ n ) ) ) e. Fin ) |
| 23 |
19
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) Fn ( 0 ... ( n x. ( 2 ^ n ) ) ) ) |
| 24 |
|
dffn4 |
|- ( ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) Fn ( 0 ... ( n x. ( 2 ^ n ) ) ) <-> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 25 |
23 24
|
sylib |
|- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 26 |
|
fofi |
|- ( ( ( 0 ... ( n x. ( 2 ^ n ) ) ) e. Fin /\ ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) e. Fin ) |
| 27 |
22 25 26
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) e. Fin ) |
| 28 |
9
|
frnd |
|- ( ( ph /\ n e. NN ) -> ran ( G ` n ) C_ ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 29 |
27 28
|
ssfid |
|- ( ( ph /\ n e. NN ) -> ran ( G ` n ) e. Fin ) |
| 30 |
1 2 3 4
|
mbfi1fseqlem2 |
|- ( n e. NN -> ( G ` n ) = ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ) |
| 31 |
30
|
fveq1d |
|- ( n e. NN -> ( ( G ` n ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) ) |
| 32 |
31
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) ) |
| 33 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) |
| 34 |
|
ovex |
|- ( n J x ) e. _V |
| 35 |
|
vex |
|- n e. _V |
| 36 |
34 35
|
ifex |
|- if ( ( n J x ) <_ n , ( n J x ) , n ) e. _V |
| 37 |
|
c0ex |
|- 0 e. _V |
| 38 |
36 37
|
ifex |
|- if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. _V |
| 39 |
|
eqid |
|- ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 40 |
39
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. _V ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 41 |
33 38 40
|
sylancl |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 42 |
32 41
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 43 |
42
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 44 |
43
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) |
| 45 |
|
eldifsni |
|- ( k e. ( ran ( G ` n ) \ { 0 } ) -> k =/= 0 ) |
| 46 |
45
|
ad2antlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k =/= 0 ) |
| 47 |
|
neeq1 |
|- ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 <-> k =/= 0 ) ) |
| 48 |
46 47
|
syl5ibrcom |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 ) ) |
| 49 |
|
iffalse |
|- ( -. x e. ( -u n [,] n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = 0 ) |
| 50 |
49
|
necon1ai |
|- ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 -> x e. ( -u n [,] n ) ) |
| 51 |
48 50
|
syl6 |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> x e. ( -u n [,] n ) ) ) |
| 52 |
51
|
pm4.71rd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> ( x e. ( -u n [,] n ) /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) ) |
| 53 |
|
iftrue |
|- ( x e. ( -u n [,] n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = if ( ( n J x ) <_ n , ( n J x ) , n ) ) |
| 54 |
53
|
eqeq1d |
|- ( x e. ( -u n [,] n ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) ) |
| 55 |
|
simpllr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> n e. NN ) |
| 56 |
55
|
nnred |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> n e. RR ) |
| 57 |
56
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> n e. RR ) |
| 58 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 59 |
|
simpr |
|- ( ( m e. NN /\ y e. RR ) -> y e. RR ) |
| 60 |
|
ffvelcdm |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 61 |
2 59 60
|
syl2an |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 62 |
58 61
|
sselid |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. RR ) |
| 63 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
| 64 |
|
nnexpcl |
|- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
| 65 |
12 63 64
|
sylancr |
|- ( m e. NN -> ( 2 ^ m ) e. NN ) |
| 66 |
65
|
ad2antrl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN ) |
| 67 |
66
|
nnred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. RR ) |
| 68 |
62 67
|
remulcld |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) x. ( 2 ^ m ) ) e. RR ) |
| 69 |
|
reflcl |
|- ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
| 70 |
68 69
|
syl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
| 71 |
70 66
|
nndivred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 72 |
71
|
ralrimivva |
|- ( ph -> A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 73 |
3
|
fmpo |
|- ( A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR <-> J : ( NN X. RR ) --> RR ) |
| 74 |
72 73
|
sylib |
|- ( ph -> J : ( NN X. RR ) --> RR ) |
| 75 |
|
fovcdm |
|- ( ( J : ( NN X. RR ) --> RR /\ n e. NN /\ x e. RR ) -> ( n J x ) e. RR ) |
| 76 |
74 75
|
syl3an1 |
|- ( ( ph /\ n e. NN /\ x e. RR ) -> ( n J x ) e. RR ) |
| 77 |
76
|
3expa |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( n J x ) e. RR ) |
| 78 |
77
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n J x ) e. RR ) |
| 79 |
78
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n J x ) e. RR ) |
| 80 |
|
lemin |
|- ( ( n e. RR /\ ( n J x ) e. RR /\ n e. RR ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
| 81 |
57 79 57 80
|
syl3anc |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
| 82 |
79 57
|
ifcld |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR ) |
| 83 |
82 57
|
letri3d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = n <-> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) ) |
| 84 |
|
simpr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> k = n ) |
| 85 |
84
|
eqeq2d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> if ( ( n J x ) <_ n , ( n J x ) , n ) = n ) ) |
| 86 |
|
min2 |
|- ( ( ( n J x ) e. RR /\ n e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
| 87 |
79 57 86
|
syl2anc |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
| 88 |
87
|
biantrurd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) ) |
| 89 |
83 85 88
|
3bitr4d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) |
| 90 |
57
|
leidd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> n <_ n ) |
| 91 |
90
|
biantrud |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ ( n J x ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
| 92 |
81 89 91
|
3bitr4d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> n <_ ( n J x ) ) ) |
| 93 |
|
breq1 |
|- ( k = n -> ( k <_ ( F ` x ) <-> n <_ ( F ` x ) ) ) |
| 94 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
| 95 |
94
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 96 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 97 |
95 96
|
sylib |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 98 |
97
|
simpld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 99 |
98
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 100 |
55 15
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. NN ) |
| 101 |
100
|
nnred |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. RR ) |
| 102 |
99 101
|
remulcld |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) x. ( 2 ^ n ) ) e. RR ) |
| 103 |
|
reflcl |
|- ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR ) |
| 104 |
102 103
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR ) |
| 105 |
100
|
nngt0d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> 0 < ( 2 ^ n ) ) |
| 106 |
|
lemuldiv |
|- ( ( n e. RR /\ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
| 107 |
56 104 101 105 106
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
| 108 |
|
lemul1 |
|- ( ( n e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 109 |
56 99 101 105 108
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 110 |
|
nnmulcl |
|- ( ( n e. NN /\ ( 2 ^ n ) e. NN ) -> ( n x. ( 2 ^ n ) ) e. NN ) |
| 111 |
55 15 110
|
syl2anc2 |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n x. ( 2 ^ n ) ) e. NN ) |
| 112 |
111
|
nnzd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n x. ( 2 ^ n ) ) e. ZZ ) |
| 113 |
|
flge |
|- ( ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR /\ ( n x. ( 2 ^ n ) ) e. ZZ ) -> ( ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
| 114 |
102 112 113
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
| 115 |
109 114
|
bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
| 116 |
|
simpr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> x e. RR ) |
| 117 |
|
simpr |
|- ( ( m = n /\ y = x ) -> y = x ) |
| 118 |
117
|
fveq2d |
|- ( ( m = n /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
| 119 |
|
simpl |
|- ( ( m = n /\ y = x ) -> m = n ) |
| 120 |
119
|
oveq2d |
|- ( ( m = n /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ n ) ) |
| 121 |
118 120
|
oveq12d |
|- ( ( m = n /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ n ) ) ) |
| 122 |
121
|
fveq2d |
|- ( ( m = n /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 123 |
122 120
|
oveq12d |
|- ( ( m = n /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 124 |
|
ovex |
|- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. _V |
| 125 |
123 3 124
|
ovmpoa |
|- ( ( n e. NN /\ x e. RR ) -> ( n J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 126 |
55 116 125
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 127 |
126
|
breq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( n J x ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
| 128 |
107 115 127
|
3bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> n <_ ( n J x ) ) ) |
| 129 |
93 128
|
sylan9bbr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( k <_ ( F ` x ) <-> n <_ ( n J x ) ) ) |
| 130 |
116
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> x e. RR ) |
| 131 |
|
iftrue |
|- ( k = n -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = RR ) |
| 132 |
131
|
adantl |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = RR ) |
| 133 |
130 132
|
eleqtrrd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
| 134 |
133
|
biantrurd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( k <_ ( F ` x ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 135 |
92 129 134
|
3bitr2d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 136 |
28
|
ssdifssd |
|- ( ( ph /\ n e. NN ) -> ( ran ( G ` n ) \ { 0 } ) C_ ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 137 |
136
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 138 |
|
eqid |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) = ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) |
| 139 |
138
|
rnmpt |
|- ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) = { k | E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) } |
| 140 |
139
|
eqabri |
|- ( k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) <-> E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) ) |
| 141 |
|
elfzelz |
|- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. ZZ ) |
| 142 |
141
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> m e. ZZ ) |
| 143 |
142
|
zcnd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> m e. CC ) |
| 144 |
15
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) e. NN ) |
| 145 |
144
|
nncnd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) e. CC ) |
| 146 |
144
|
nnne0d |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) =/= 0 ) |
| 147 |
143 145 146
|
divcan1d |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) = m ) |
| 148 |
147 142
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) e. ZZ ) |
| 149 |
|
oveq1 |
|- ( k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) = ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) ) |
| 150 |
149
|
eleq1d |
|- ( k = ( m / ( 2 ^ n ) ) -> ( ( k x. ( 2 ^ n ) ) e. ZZ <-> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) e. ZZ ) ) |
| 151 |
148 150
|
syl5ibrcom |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
| 152 |
151
|
rexlimdva |
|- ( ( ph /\ n e. NN ) -> ( E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
| 153 |
140 152
|
biimtrid |
|- ( ( ph /\ n e. NN ) -> ( k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
| 154 |
153
|
imp |
|- ( ( ( ph /\ n e. NN ) /\ k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
| 155 |
137 154
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
| 156 |
155
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
| 157 |
|
flbi |
|- ( ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR /\ ( k x. ( 2 ^ n ) ) e. ZZ ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
| 158 |
102 156 157
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
| 159 |
158
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
| 160 |
|
neeq1 |
|- ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n <-> k =/= n ) ) |
| 161 |
160
|
biimparc |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n ) |
| 162 |
|
iffalse |
|- ( -. ( n J x ) <_ n -> if ( ( n J x ) <_ n , ( n J x ) , n ) = n ) |
| 163 |
162
|
necon1ai |
|- ( if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n -> ( n J x ) <_ n ) |
| 164 |
161 163
|
syl |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( n J x ) <_ n ) |
| 165 |
164
|
iftrued |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = ( n J x ) ) |
| 166 |
|
simpr |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) |
| 167 |
165 166
|
eqtr3d |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( n J x ) = k ) |
| 168 |
167 164
|
eqbrtrrd |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> k <_ n ) |
| 169 |
168 167
|
jca |
|- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( k <_ n /\ ( n J x ) = k ) ) |
| 170 |
169
|
ex |
|- ( k =/= n -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k -> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 171 |
|
breq1 |
|- ( ( n J x ) = k -> ( ( n J x ) <_ n <-> k <_ n ) ) |
| 172 |
171
|
biimparc |
|- ( ( k <_ n /\ ( n J x ) = k ) -> ( n J x ) <_ n ) |
| 173 |
172
|
iftrued |
|- ( ( k <_ n /\ ( n J x ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = ( n J x ) ) |
| 174 |
|
simpr |
|- ( ( k <_ n /\ ( n J x ) = k ) -> ( n J x ) = k ) |
| 175 |
173 174
|
eqtrd |
|- ( ( k <_ n /\ ( n J x ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) |
| 176 |
170 175
|
impbid1 |
|- ( k =/= n -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 177 |
176
|
adantl |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 178 |
|
eldifi |
|- ( k e. ( ran ( G ` n ) \ { 0 } ) -> k e. ran ( G ` n ) ) |
| 179 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 180 |
179
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> n e. RR ) |
| 181 |
77 180 86
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
| 182 |
13
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> n e. NN0 ) |
| 183 |
182
|
nn0ge0d |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 <_ n ) |
| 184 |
|
breq1 |
|- ( if ( ( n J x ) <_ n , ( n J x ) , n ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) ) |
| 185 |
|
breq1 |
|- ( 0 = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) -> ( 0 <_ n <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) ) |
| 186 |
184 185
|
ifboth |
|- ( ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ 0 <_ n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) |
| 187 |
181 183 186
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) |
| 188 |
42 187
|
eqbrtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) <_ n ) |
| 189 |
188
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. x e. RR ( ( G ` n ) ` x ) <_ n ) |
| 190 |
9
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) Fn RR ) |
| 191 |
|
breq1 |
|- ( k = ( ( G ` n ) ` x ) -> ( k <_ n <-> ( ( G ` n ) ` x ) <_ n ) ) |
| 192 |
191
|
ralrn |
|- ( ( G ` n ) Fn RR -> ( A. k e. ran ( G ` n ) k <_ n <-> A. x e. RR ( ( G ` n ) ` x ) <_ n ) ) |
| 193 |
190 192
|
syl |
|- ( ( ph /\ n e. NN ) -> ( A. k e. ran ( G ` n ) k <_ n <-> A. x e. RR ( ( G ` n ) ` x ) <_ n ) ) |
| 194 |
189 193
|
mpbird |
|- ( ( ph /\ n e. NN ) -> A. k e. ran ( G ` n ) k <_ n ) |
| 195 |
194
|
r19.21bi |
|- ( ( ( ph /\ n e. NN ) /\ k e. ran ( G ` n ) ) -> k <_ n ) |
| 196 |
178 195
|
sylan2 |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k <_ n ) |
| 197 |
196
|
ad2antrr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> k <_ n ) |
| 198 |
197
|
biantrurd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( n J x ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 199 |
126
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n J x ) = k <-> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) = k ) ) |
| 200 |
104
|
recnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. CC ) |
| 201 |
28 20
|
sstrd |
|- ( ( ph /\ n e. NN ) -> ran ( G ` n ) C_ RR ) |
| 202 |
201
|
ssdifssd |
|- ( ( ph /\ n e. NN ) -> ( ran ( G ` n ) \ { 0 } ) C_ RR ) |
| 203 |
202
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k e. RR ) |
| 204 |
203
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. RR ) |
| 205 |
204
|
recnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. CC ) |
| 206 |
100
|
nncnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. CC ) |
| 207 |
100
|
nnne0d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) =/= 0 ) |
| 208 |
200 205 206 207
|
divmul3d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 209 |
199 208
|
bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n J x ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 210 |
209
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( n J x ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 211 |
177 198 210
|
3bitr2d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 212 |
|
ifnefalse |
|- ( k =/= n -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 213 |
212
|
eleq2d |
|- ( k =/= n -> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) <-> x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
| 214 |
100
|
nnrecred |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 1 / ( 2 ^ n ) ) e. RR ) |
| 215 |
204 214
|
readdcld |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k + ( 1 / ( 2 ^ n ) ) ) e. RR ) |
| 216 |
215
|
rexrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k + ( 1 / ( 2 ^ n ) ) ) e. RR* ) |
| 217 |
|
elioomnf |
|- ( ( k + ( 1 / ( 2 ^ n ) ) ) e. RR* -> ( ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 218 |
216 217
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 219 |
94
|
ad2antrr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> F : RR --> ( 0 [,) +oo ) ) |
| 220 |
219
|
ffnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> F Fn RR ) |
| 221 |
|
elpreima |
|- ( F Fn RR -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
| 222 |
220 221
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
| 223 |
116 222
|
mpbirand |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 224 |
99
|
biantrurd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 225 |
218 223 224
|
3bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) |
| 226 |
|
ltmul1 |
|- ( ( ( F ` x ) e. RR /\ ( k + ( 1 / ( 2 ^ n ) ) ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) ) ) |
| 227 |
99 215 101 105 226
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) ) ) |
| 228 |
214
|
recnd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 1 / ( 2 ^ n ) ) e. CC ) |
| 229 |
206 207
|
recid2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( 1 / ( 2 ^ n ) ) x. ( 2 ^ n ) ) = 1 ) |
| 230 |
229
|
oveq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( k x. ( 2 ^ n ) ) + ( ( 1 / ( 2 ^ n ) ) x. ( 2 ^ n ) ) ) = ( ( k x. ( 2 ^ n ) ) + 1 ) ) |
| 231 |
205 206 228 230
|
joinlmuladdmuld |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) = ( ( k x. ( 2 ^ n ) ) + 1 ) ) |
| 232 |
231
|
breq2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
| 233 |
225 227 232
|
3bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
| 234 |
213 233
|
sylan9bbr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
| 235 |
|
lemul1 |
|- ( ( k e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 236 |
204 99 101 105 235
|
syl112anc |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 237 |
236
|
adantr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 238 |
234 237
|
anbi12d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) <-> ( ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) /\ ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
| 239 |
238
|
biancomd |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
| 240 |
159 211 239
|
3bitr4d |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 241 |
135 240
|
pm2.61dane |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 242 |
|
eldif |
|- ( x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ -. x e. ( `' F " ( -oo (,) k ) ) ) ) |
| 243 |
204
|
rexrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. RR* ) |
| 244 |
|
elioomnf |
|- ( k e. RR* -> ( ( F ` x ) e. ( -oo (,) k ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
| 245 |
243 244
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) k ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
| 246 |
|
elpreima |
|- ( F Fn RR -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) k ) ) ) ) |
| 247 |
220 246
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) k ) ) ) ) |
| 248 |
116 247
|
mpbirand |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( F ` x ) e. ( -oo (,) k ) ) ) |
| 249 |
99
|
biantrurd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < k <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
| 250 |
245 248 249
|
3bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( F ` x ) < k ) ) |
| 251 |
250
|
notbid |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( -. x e. ( `' F " ( -oo (,) k ) ) <-> -. ( F ` x ) < k ) ) |
| 252 |
204 99
|
lenltd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k <_ ( F ` x ) <-> -. ( F ` x ) < k ) ) |
| 253 |
251 252
|
bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( -. x e. ( `' F " ( -oo (,) k ) ) <-> k <_ ( F ` x ) ) ) |
| 254 |
253
|
anbi2d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ -. x e. ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 255 |
242 254
|
bitrid |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 256 |
241 255
|
bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
| 257 |
54 256
|
sylan9bbr |
|- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ x e. ( -u n [,] n ) ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
| 258 |
257
|
pm5.32da |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( x e. ( -u n [,] n ) /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
| 259 |
44 52 258
|
3bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
| 260 |
259
|
pm5.32da |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. RR /\ ( ( G ` n ) ` x ) = k ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
| 261 |
21
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) : RR --> RR ) |
| 262 |
261
|
ffnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) Fn RR ) |
| 263 |
|
fniniseg |
|- ( ( G ` n ) Fn RR -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
| 264 |
262 263
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
| 265 |
|
elin |
|- ( x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
| 266 |
179
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> n e. RR ) |
| 267 |
266
|
renegcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> -u n e. RR ) |
| 268 |
|
iccmbl |
|- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) e. dom vol ) |
| 269 |
267 266 268
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) e. dom vol ) |
| 270 |
|
mblss |
|- ( ( -u n [,] n ) e. dom vol -> ( -u n [,] n ) C_ RR ) |
| 271 |
269 270
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) C_ RR ) |
| 272 |
271
|
sseld |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( -u n [,] n ) -> x e. RR ) ) |
| 273 |
272
|
adantrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) -> x e. RR ) ) |
| 274 |
273
|
pm4.71rd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
| 275 |
265 274
|
bitrid |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
| 276 |
260 264 275
|
3bitr4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
| 277 |
276
|
eqrdv |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) = ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
| 278 |
|
rembl |
|- RR e. dom vol |
| 279 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
| 280 |
2 58 279
|
sylancl |
|- ( ph -> F : RR --> RR ) |
| 281 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) |
| 282 |
1 280 281
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) |
| 283 |
|
ifcl |
|- ( ( RR e. dom vol /\ ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol ) |
| 284 |
278 282 283
|
sylancr |
|- ( ph -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol ) |
| 285 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( -oo (,) k ) ) e. dom vol ) |
| 286 |
1 280 285
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) k ) ) e. dom vol ) |
| 287 |
|
difmbl |
|- ( ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol /\ ( `' F " ( -oo (,) k ) ) e. dom vol ) -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
| 288 |
284 286 287
|
syl2anc |
|- ( ph -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
| 289 |
288
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
| 290 |
|
inmbl |
|- ( ( ( -u n [,] n ) e. dom vol /\ ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) -> ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) e. dom vol ) |
| 291 |
269 289 290
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) e. dom vol ) |
| 292 |
277 291
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) e. dom vol ) |
| 293 |
|
mblvol |
|- ( ( `' ( G ` n ) " { k } ) e. dom vol -> ( vol ` ( `' ( G ` n ) " { k } ) ) = ( vol* ` ( `' ( G ` n ) " { k } ) ) ) |
| 294 |
292 293
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( `' ( G ` n ) " { k } ) ) = ( vol* ` ( `' ( G ` n ) " { k } ) ) ) |
| 295 |
190
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) Fn RR ) |
| 296 |
295 263
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
| 297 |
77 180
|
ifcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR ) |
| 298 |
|
0re |
|- 0 e. RR |
| 299 |
|
ifcl |
|- ( ( if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR /\ 0 e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) |
| 300 |
297 298 299
|
sylancl |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) |
| 301 |
39
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 302 |
33 300 301
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 303 |
32 302
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 304 |
303
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 305 |
304
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) |
| 306 |
305 51
|
sylbid |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k -> x e. ( -u n [,] n ) ) ) |
| 307 |
306
|
expimpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. RR /\ ( ( G ` n ) ` x ) = k ) -> x e. ( -u n [,] n ) ) ) |
| 308 |
296 307
|
sylbid |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) -> x e. ( -u n [,] n ) ) ) |
| 309 |
308
|
ssrdv |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) C_ ( -u n [,] n ) ) |
| 310 |
|
iccssre |
|- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) C_ RR ) |
| 311 |
267 266 310
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) C_ RR ) |
| 312 |
|
mblvol |
|- ( ( -u n [,] n ) e. dom vol -> ( vol ` ( -u n [,] n ) ) = ( vol* ` ( -u n [,] n ) ) ) |
| 313 |
269 312
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( -u n [,] n ) ) = ( vol* ` ( -u n [,] n ) ) ) |
| 314 |
|
iccvolcl |
|- ( ( -u n e. RR /\ n e. RR ) -> ( vol ` ( -u n [,] n ) ) e. RR ) |
| 315 |
267 266 314
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( -u n [,] n ) ) e. RR ) |
| 316 |
313 315
|
eqeltrrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol* ` ( -u n [,] n ) ) e. RR ) |
| 317 |
|
ovolsscl |
|- ( ( ( `' ( G ` n ) " { k } ) C_ ( -u n [,] n ) /\ ( -u n [,] n ) C_ RR /\ ( vol* ` ( -u n [,] n ) ) e. RR ) -> ( vol* ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
| 318 |
309 311 316 317
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol* ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
| 319 |
294 318
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
| 320 |
21 29 292 319
|
i1fd |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. dom S.1 ) |
| 321 |
320
|
ralrimiva |
|- ( ph -> A. n e. NN ( G ` n ) e. dom S.1 ) |
| 322 |
|
ffnfv |
|- ( G : NN --> dom S.1 <-> ( G Fn NN /\ A. n e. NN ( G ` n ) e. dom S.1 ) ) |
| 323 |
8 321 322
|
sylanbrc |
|- ( ph -> G : NN --> dom S.1 ) |