Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
|- ( ph -> F e. MblFn ) |
2 |
|
mbfi1fseq.2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
3 |
|
mbfi1fseq.3 |
|- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
4 |
|
mbfi1fseq.4 |
|- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
5 |
1 2 3 4
|
mbfi1fseqlem4 |
|- ( ph -> G : NN --> dom S.1 ) |
6 |
1 2 3 4
|
mbfi1fseqlem5 |
|- ( ( ph /\ n e. NN ) -> ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) |
7 |
6
|
ralrimiva |
|- ( ph -> A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) |
8 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
9 |
8
|
recnd |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
10 |
9
|
abscld |
|- ( ( ph /\ x e. RR ) -> ( abs ` x ) e. RR ) |
11 |
2
|
ffvelrnda |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
12 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
13 |
11 12
|
sylib |
|- ( ( ph /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
14 |
13
|
simpld |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) |
15 |
10 14
|
readdcld |
|- ( ( ph /\ x e. RR ) -> ( ( abs ` x ) + ( F ` x ) ) e. RR ) |
16 |
|
arch |
|- ( ( ( abs ` x ) + ( F ` x ) ) e. RR -> E. k e. NN ( ( abs ` x ) + ( F ` x ) ) < k ) |
17 |
15 16
|
syl |
|- ( ( ph /\ x e. RR ) -> E. k e. NN ( ( abs ` x ) + ( F ` x ) ) < k ) |
18 |
|
eqid |
|- ( ZZ>= ` k ) = ( ZZ>= ` k ) |
19 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
20 |
19
|
ad2antrl |
|- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> k e. ZZ ) |
21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
22 |
|
1zzd |
|- ( ( ph /\ x e. RR ) -> 1 e. ZZ ) |
23 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
24 |
23
|
a1i |
|- ( ( ph /\ x e. RR ) -> ( 1 / 2 ) e. CC ) |
25 |
|
halfre |
|- ( 1 / 2 ) e. RR |
26 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
27 |
|
absid |
|- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
28 |
25 26 27
|
mp2an |
|- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
29 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
30 |
28 29
|
eqbrtri |
|- ( abs ` ( 1 / 2 ) ) < 1 |
31 |
30
|
a1i |
|- ( ( ph /\ x e. RR ) -> ( abs ` ( 1 / 2 ) ) < 1 ) |
32 |
24 31
|
expcnv |
|- ( ( ph /\ x e. RR ) -> ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
33 |
14
|
recnd |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. CC ) |
34 |
|
nnex |
|- NN e. _V |
35 |
34
|
mptex |
|- ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) e. _V |
36 |
35
|
a1i |
|- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) e. _V ) |
37 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
38 |
37
|
adantl |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> j e. NN0 ) |
39 |
|
oveq2 |
|- ( n = j -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ j ) ) |
40 |
|
eqid |
|- ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
41 |
|
ovex |
|- ( ( 1 / 2 ) ^ j ) e. _V |
42 |
39 40 41
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
43 |
38 42
|
syl |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
44 |
|
expcl |
|- ( ( ( 1 / 2 ) e. CC /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ j ) e. CC ) |
45 |
23 38 44
|
sylancr |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( 1 / 2 ) ^ j ) e. CC ) |
46 |
43 45
|
eqeltrd |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) e. CC ) |
47 |
39
|
oveq2d |
|- ( n = j -> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
48 |
|
eqid |
|- ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) = ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) |
49 |
|
ovex |
|- ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) e. _V |
50 |
47 48 49
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
51 |
50
|
adantl |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
52 |
43
|
oveq2d |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` x ) - ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
53 |
51 52
|
eqtr4d |
|- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) ) ) |
54 |
21 22 32 33 36 46 53
|
climsubc2 |
|- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ~~> ( ( F ` x ) - 0 ) ) |
55 |
33
|
subid1d |
|- ( ( ph /\ x e. RR ) -> ( ( F ` x ) - 0 ) = ( F ` x ) ) |
56 |
54 55
|
breqtrd |
|- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ~~> ( F ` x ) ) |
57 |
56
|
adantr |
|- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ~~> ( F ` x ) ) |
58 |
34
|
mptex |
|- ( n e. NN |-> ( ( G ` n ) ` x ) ) e. _V |
59 |
58
|
a1i |
|- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> ( n e. NN |-> ( ( G ` n ) ` x ) ) e. _V ) |
60 |
|
simprl |
|- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> k e. NN ) |
61 |
|
eluznn |
|- ( ( k e. NN /\ j e. ( ZZ>= ` k ) ) -> j e. NN ) |
62 |
60 61
|
sylan |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. NN ) |
63 |
62 50
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
64 |
14
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) e. RR ) |
65 |
62 37
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. NN0 ) |
66 |
|
reexpcl |
|- ( ( ( 1 / 2 ) e. RR /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ j ) e. RR ) |
67 |
25 65 66
|
sylancr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( 1 / 2 ) ^ j ) e. RR ) |
68 |
64 67
|
resubcld |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) e. RR ) |
69 |
63 68
|
eqeltrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) e. RR ) |
70 |
|
fveq2 |
|- ( n = j -> ( G ` n ) = ( G ` j ) ) |
71 |
70
|
fveq1d |
|- ( n = j -> ( ( G ` n ) ` x ) = ( ( G ` j ) ` x ) ) |
72 |
|
eqid |
|- ( n e. NN |-> ( ( G ` n ) ` x ) ) = ( n e. NN |-> ( ( G ` n ) ` x ) ) |
73 |
|
fvex |
|- ( ( G ` j ) ` x ) e. _V |
74 |
71 72 73
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = ( ( G ` j ) ` x ) ) |
75 |
62 74
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = ( ( G ` j ) ` x ) ) |
76 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> G : NN --> dom S.1 ) |
77 |
76 62
|
ffvelrnd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( G ` j ) e. dom S.1 ) |
78 |
|
i1ff |
|- ( ( G ` j ) e. dom S.1 -> ( G ` j ) : RR --> RR ) |
79 |
77 78
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( G ` j ) : RR --> RR ) |
80 |
8
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x e. RR ) |
81 |
79 80
|
ffvelrnd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( G ` j ) ` x ) e. RR ) |
82 |
75 81
|
eqeltrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) e. RR ) |
83 |
33
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) e. CC ) |
84 |
|
2nn |
|- 2 e. NN |
85 |
|
nnexpcl |
|- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
86 |
84 65 85
|
sylancr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) e. NN ) |
87 |
86
|
nnred |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) e. RR ) |
88 |
87
|
recnd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) e. CC ) |
89 |
86
|
nnne0d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) =/= 0 ) |
90 |
83 88 89
|
divcan4d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) = ( F ` x ) ) |
91 |
90
|
eqcomd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) = ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) ) |
92 |
|
2cnd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 2 e. CC ) |
93 |
|
2ne0 |
|- 2 =/= 0 |
94 |
93
|
a1i |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 2 =/= 0 ) |
95 |
|
eluzelz |
|- ( j e. ( ZZ>= ` k ) -> j e. ZZ ) |
96 |
95
|
adantl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. ZZ ) |
97 |
92 94 96
|
exprecd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) |
98 |
91 97
|
oveq12d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) = ( ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) - ( 1 / ( 2 ^ j ) ) ) ) |
99 |
64 87
|
remulcld |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) x. ( 2 ^ j ) ) e. RR ) |
100 |
99
|
recnd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) x. ( 2 ^ j ) ) e. CC ) |
101 |
|
1cnd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 1 e. CC ) |
102 |
100 101 88 89
|
divsubdird |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) = ( ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) - ( 1 / ( 2 ^ j ) ) ) ) |
103 |
98 102
|
eqtr4d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) = ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) ) |
104 |
|
fllep1 |
|- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( ( F ` x ) x. ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) + 1 ) ) |
105 |
99 104
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) x. ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) + 1 ) ) |
106 |
|
1red |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 1 e. RR ) |
107 |
|
reflcl |
|- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR ) |
108 |
99 107
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR ) |
109 |
99 106 108
|
lesubaddd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <-> ( ( F ` x ) x. ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) + 1 ) ) ) |
110 |
105 109
|
mpbird |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
111 |
|
peano2rem |
|- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) e. RR ) |
112 |
99 111
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) e. RR ) |
113 |
86
|
nngt0d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 0 < ( 2 ^ j ) ) |
114 |
|
lediv1 |
|- ( ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) e. RR /\ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR /\ ( ( 2 ^ j ) e. RR /\ 0 < ( 2 ^ j ) ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <-> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) ) |
115 |
112 108 87 113 114
|
syl112anc |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <-> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) ) |
116 |
110 115
|
mpbid |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
117 |
103 116
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
118 |
1 2 3 4
|
mbfi1fseqlem2 |
|- ( j e. NN -> ( G ` j ) = ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ) |
119 |
62 118
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( G ` j ) = ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ) |
120 |
119
|
fveq1d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( G ` j ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ` x ) ) |
121 |
|
ovex |
|- ( j J x ) e. _V |
122 |
|
vex |
|- j e. _V |
123 |
121 122
|
ifex |
|- if ( ( j J x ) <_ j , ( j J x ) , j ) e. _V |
124 |
|
c0ex |
|- 0 e. _V |
125 |
123 124
|
ifex |
|- if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) e. _V |
126 |
|
eqid |
|- ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
127 |
126
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) e. _V ) -> ( ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ` x ) = if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
128 |
80 125 127
|
sylancl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ` x ) = if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
129 |
75 120 128
|
3eqtrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
130 |
10
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( abs ` x ) e. RR ) |
131 |
15
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) e. RR ) |
132 |
62
|
nnred |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. RR ) |
133 |
11
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
134 |
133 12
|
sylib |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
135 |
134
|
simprd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 0 <_ ( F ` x ) ) |
136 |
130 64
|
addge01d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 0 <_ ( F ` x ) <-> ( abs ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) ) |
137 |
135 136
|
mpbid |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( abs ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) |
138 |
60
|
adantr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> k e. NN ) |
139 |
138
|
nnred |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> k e. RR ) |
140 |
|
simplrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) < k ) |
141 |
131 139 140
|
ltled |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) <_ k ) |
142 |
|
eluzle |
|- ( j e. ( ZZ>= ` k ) -> k <_ j ) |
143 |
142
|
adantl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> k <_ j ) |
144 |
131 139 132 141 143
|
letrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) <_ j ) |
145 |
130 131 132 137 144
|
letrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( abs ` x ) <_ j ) |
146 |
80 132
|
absled |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) <_ j <-> ( -u j <_ x /\ x <_ j ) ) ) |
147 |
145 146
|
mpbid |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( -u j <_ x /\ x <_ j ) ) |
148 |
147
|
simpld |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> -u j <_ x ) |
149 |
147
|
simprd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x <_ j ) |
150 |
132
|
renegcld |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> -u j e. RR ) |
151 |
|
elicc2 |
|- ( ( -u j e. RR /\ j e. RR ) -> ( x e. ( -u j [,] j ) <-> ( x e. RR /\ -u j <_ x /\ x <_ j ) ) ) |
152 |
150 132 151
|
syl2anc |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( x e. ( -u j [,] j ) <-> ( x e. RR /\ -u j <_ x /\ x <_ j ) ) ) |
153 |
80 148 149 152
|
mpbir3and |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x e. ( -u j [,] j ) ) |
154 |
153
|
iftrued |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) = if ( ( j J x ) <_ j , ( j J x ) , j ) ) |
155 |
|
simpr |
|- ( ( m = j /\ y = x ) -> y = x ) |
156 |
155
|
fveq2d |
|- ( ( m = j /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
157 |
|
simpl |
|- ( ( m = j /\ y = x ) -> m = j ) |
158 |
157
|
oveq2d |
|- ( ( m = j /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ j ) ) |
159 |
156 158
|
oveq12d |
|- ( ( m = j /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ j ) ) ) |
160 |
159
|
fveq2d |
|- ( ( m = j /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
161 |
160 158
|
oveq12d |
|- ( ( m = j /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
162 |
|
ovex |
|- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) e. _V |
163 |
161 3 162
|
ovmpoa |
|- ( ( j e. NN /\ x e. RR ) -> ( j J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
164 |
62 80 163
|
syl2anc |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( j J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
165 |
108 86
|
nndivred |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) e. RR ) |
166 |
|
flle |
|- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) |
167 |
99 166
|
syl |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) |
168 |
|
ledivmul2 |
|- ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ j ) e. RR /\ 0 < ( 2 ^ j ) ) ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ ( F ` x ) <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
169 |
108 64 87 113 168
|
syl112anc |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ ( F ` x ) <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
170 |
167 169
|
mpbird |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ ( F ` x ) ) |
171 |
9
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x e. CC ) |
172 |
171
|
absge0d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 0 <_ ( abs ` x ) ) |
173 |
64 130
|
addge02d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 0 <_ ( abs ` x ) <-> ( F ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) ) |
174 |
172 173
|
mpbid |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) |
175 |
64 131 132 174 144
|
letrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) <_ j ) |
176 |
165 64 132 170 175
|
letrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ j ) |
177 |
164 176
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( j J x ) <_ j ) |
178 |
177
|
iftrued |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> if ( ( j J x ) <_ j , ( j J x ) , j ) = ( j J x ) ) |
179 |
178 164
|
eqtrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> if ( ( j J x ) <_ j , ( j J x ) , j ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
180 |
129 154 179
|
3eqtrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
181 |
117 63 180
|
3brtr4d |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) <_ ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) ) |
182 |
180 170
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) <_ ( F ` x ) ) |
183 |
18 20 57 59 69 82 181 182
|
climsqz |
|- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) |
184 |
17 183
|
rexlimddv |
|- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) |
185 |
184
|
ralrimiva |
|- ( ph -> A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) |
186 |
34
|
mptex |
|- ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) e. _V |
187 |
4 186
|
eqeltri |
|- G e. _V |
188 |
|
feq1 |
|- ( g = G -> ( g : NN --> dom S.1 <-> G : NN --> dom S.1 ) ) |
189 |
|
fveq1 |
|- ( g = G -> ( g ` n ) = ( G ` n ) ) |
190 |
189
|
breq2d |
|- ( g = G -> ( 0p oR <_ ( g ` n ) <-> 0p oR <_ ( G ` n ) ) ) |
191 |
|
fveq1 |
|- ( g = G -> ( g ` ( n + 1 ) ) = ( G ` ( n + 1 ) ) ) |
192 |
189 191
|
breq12d |
|- ( g = G -> ( ( g ` n ) oR <_ ( g ` ( n + 1 ) ) <-> ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) |
193 |
190 192
|
anbi12d |
|- ( g = G -> ( ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) ) |
194 |
193
|
ralbidv |
|- ( g = G -> ( A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) <-> A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) ) |
195 |
189
|
fveq1d |
|- ( g = G -> ( ( g ` n ) ` x ) = ( ( G ` n ) ` x ) ) |
196 |
195
|
mpteq2dv |
|- ( g = G -> ( n e. NN |-> ( ( g ` n ) ` x ) ) = ( n e. NN |-> ( ( G ` n ) ` x ) ) ) |
197 |
196
|
breq1d |
|- ( g = G -> ( ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) <-> ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
198 |
197
|
ralbidv |
|- ( g = G -> ( A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) <-> A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
199 |
188 194 198
|
3anbi123d |
|- ( g = G -> ( ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) <-> ( G : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) ) ) |
200 |
187 199
|
spcev |
|- ( ( G : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
201 |
5 7 185 200
|
syl3anc |
|- ( ph -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) ) |