| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvresima |
|- ( `' ( _I |` A ) " x ) = ( ( `' _I " x ) i^i A ) |
| 2 |
|
cnvi |
|- `' _I = _I |
| 3 |
2
|
imaeq1i |
|- ( `' _I " x ) = ( _I " x ) |
| 4 |
|
imai |
|- ( _I " x ) = x |
| 5 |
3 4
|
eqtri |
|- ( `' _I " x ) = x |
| 6 |
5
|
ineq1i |
|- ( ( `' _I " x ) i^i A ) = ( x i^i A ) |
| 7 |
1 6
|
eqtri |
|- ( `' ( _I |` A ) " x ) = ( x i^i A ) |
| 8 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 9 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
| 10 |
|
ovelrn |
|- ( (,) Fn ( RR* X. RR* ) -> ( x e. ran (,) <-> E. y e. RR* E. z e. RR* x = ( y (,) z ) ) ) |
| 11 |
8 9 10
|
mp2b |
|- ( x e. ran (,) <-> E. y e. RR* E. z e. RR* x = ( y (,) z ) ) |
| 12 |
|
id |
|- ( x = ( y (,) z ) -> x = ( y (,) z ) ) |
| 13 |
|
ioombl |
|- ( y (,) z ) e. dom vol |
| 14 |
12 13
|
eqeltrdi |
|- ( x = ( y (,) z ) -> x e. dom vol ) |
| 15 |
14
|
a1i |
|- ( ( y e. RR* /\ z e. RR* ) -> ( x = ( y (,) z ) -> x e. dom vol ) ) |
| 16 |
15
|
rexlimivv |
|- ( E. y e. RR* E. z e. RR* x = ( y (,) z ) -> x e. dom vol ) |
| 17 |
11 16
|
sylbi |
|- ( x e. ran (,) -> x e. dom vol ) |
| 18 |
|
id |
|- ( A e. dom vol -> A e. dom vol ) |
| 19 |
|
inmbl |
|- ( ( x e. dom vol /\ A e. dom vol ) -> ( x i^i A ) e. dom vol ) |
| 20 |
17 18 19
|
syl2anr |
|- ( ( A e. dom vol /\ x e. ran (,) ) -> ( x i^i A ) e. dom vol ) |
| 21 |
7 20
|
eqeltrid |
|- ( ( A e. dom vol /\ x e. ran (,) ) -> ( `' ( _I |` A ) " x ) e. dom vol ) |
| 22 |
21
|
ralrimiva |
|- ( A e. dom vol -> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) |
| 23 |
|
f1oi |
|- ( _I |` A ) : A -1-1-onto-> A |
| 24 |
|
f1of |
|- ( ( _I |` A ) : A -1-1-onto-> A -> ( _I |` A ) : A --> A ) |
| 25 |
23 24
|
ax-mp |
|- ( _I |` A ) : A --> A |
| 26 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 27 |
|
fss |
|- ( ( ( _I |` A ) : A --> A /\ A C_ RR ) -> ( _I |` A ) : A --> RR ) |
| 28 |
25 26 27
|
sylancr |
|- ( A e. dom vol -> ( _I |` A ) : A --> RR ) |
| 29 |
|
ismbf |
|- ( ( _I |` A ) : A --> RR -> ( ( _I |` A ) e. MblFn <-> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) ) |
| 30 |
28 29
|
syl |
|- ( A e. dom vol -> ( ( _I |` A ) e. MblFn <-> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) ) |
| 31 |
22 30
|
mpbird |
|- ( A e. dom vol -> ( _I |` A ) e. MblFn ) |