Step |
Hyp |
Ref |
Expression |
1 |
|
cnvresima |
|- ( `' ( _I |` A ) " x ) = ( ( `' _I " x ) i^i A ) |
2 |
|
cnvi |
|- `' _I = _I |
3 |
2
|
imaeq1i |
|- ( `' _I " x ) = ( _I " x ) |
4 |
|
imai |
|- ( _I " x ) = x |
5 |
3 4
|
eqtri |
|- ( `' _I " x ) = x |
6 |
5
|
ineq1i |
|- ( ( `' _I " x ) i^i A ) = ( x i^i A ) |
7 |
1 6
|
eqtri |
|- ( `' ( _I |` A ) " x ) = ( x i^i A ) |
8 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
9 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
10 |
|
ovelrn |
|- ( (,) Fn ( RR* X. RR* ) -> ( x e. ran (,) <-> E. y e. RR* E. z e. RR* x = ( y (,) z ) ) ) |
11 |
8 9 10
|
mp2b |
|- ( x e. ran (,) <-> E. y e. RR* E. z e. RR* x = ( y (,) z ) ) |
12 |
|
id |
|- ( x = ( y (,) z ) -> x = ( y (,) z ) ) |
13 |
|
ioombl |
|- ( y (,) z ) e. dom vol |
14 |
12 13
|
eqeltrdi |
|- ( x = ( y (,) z ) -> x e. dom vol ) |
15 |
14
|
a1i |
|- ( ( y e. RR* /\ z e. RR* ) -> ( x = ( y (,) z ) -> x e. dom vol ) ) |
16 |
15
|
rexlimivv |
|- ( E. y e. RR* E. z e. RR* x = ( y (,) z ) -> x e. dom vol ) |
17 |
11 16
|
sylbi |
|- ( x e. ran (,) -> x e. dom vol ) |
18 |
|
id |
|- ( A e. dom vol -> A e. dom vol ) |
19 |
|
inmbl |
|- ( ( x e. dom vol /\ A e. dom vol ) -> ( x i^i A ) e. dom vol ) |
20 |
17 18 19
|
syl2anr |
|- ( ( A e. dom vol /\ x e. ran (,) ) -> ( x i^i A ) e. dom vol ) |
21 |
7 20
|
eqeltrid |
|- ( ( A e. dom vol /\ x e. ran (,) ) -> ( `' ( _I |` A ) " x ) e. dom vol ) |
22 |
21
|
ralrimiva |
|- ( A e. dom vol -> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) |
23 |
|
f1oi |
|- ( _I |` A ) : A -1-1-onto-> A |
24 |
|
f1of |
|- ( ( _I |` A ) : A -1-1-onto-> A -> ( _I |` A ) : A --> A ) |
25 |
23 24
|
ax-mp |
|- ( _I |` A ) : A --> A |
26 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
27 |
|
fss |
|- ( ( ( _I |` A ) : A --> A /\ A C_ RR ) -> ( _I |` A ) : A --> RR ) |
28 |
25 26 27
|
sylancr |
|- ( A e. dom vol -> ( _I |` A ) : A --> RR ) |
29 |
|
ismbf |
|- ( ( _I |` A ) : A --> RR -> ( ( _I |` A ) e. MblFn <-> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) ) |
30 |
28 29
|
syl |
|- ( A e. dom vol -> ( ( _I |` A ) e. MblFn <-> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) ) |
31 |
22 30
|
mpbird |
|- ( A e. dom vol -> ( _I |` A ) e. MblFn ) |