Step |
Hyp |
Ref |
Expression |
1 |
|
ismbf |
|- ( F : A --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
2 |
1
|
biimpac |
|- ( ( F e. MblFn /\ F : A --> RR ) -> A. x e. ran (,) ( `' F " x ) e. dom vol ) |
3 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
4 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
5 |
3 4
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
6 |
|
fnovrn |
|- ( ( (,) Fn ( RR* X. RR* ) /\ B e. RR* /\ C e. RR* ) -> ( B (,) C ) e. ran (,) ) |
7 |
5 6
|
mp3an1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B (,) C ) e. ran (,) ) |
8 |
|
imaeq2 |
|- ( x = ( B (,) C ) -> ( `' F " x ) = ( `' F " ( B (,) C ) ) ) |
9 |
8
|
eleq1d |
|- ( x = ( B (,) C ) -> ( ( `' F " x ) e. dom vol <-> ( `' F " ( B (,) C ) ) e. dom vol ) ) |
10 |
9
|
rspccva |
|- ( ( A. x e. ran (,) ( `' F " x ) e. dom vol /\ ( B (,) C ) e. ran (,) ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
11 |
2 7 10
|
syl2an |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR* /\ C e. RR* ) ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
12 |
|
ndmioo |
|- ( -. ( B e. RR* /\ C e. RR* ) -> ( B (,) C ) = (/) ) |
13 |
12
|
imaeq2d |
|- ( -. ( B e. RR* /\ C e. RR* ) -> ( `' F " ( B (,) C ) ) = ( `' F " (/) ) ) |
14 |
|
ima0 |
|- ( `' F " (/) ) = (/) |
15 |
13 14
|
eqtrdi |
|- ( -. ( B e. RR* /\ C e. RR* ) -> ( `' F " ( B (,) C ) ) = (/) ) |
16 |
|
0mbl |
|- (/) e. dom vol |
17 |
15 16
|
eqeltrdi |
|- ( -. ( B e. RR* /\ C e. RR* ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
18 |
17
|
adantl |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ -. ( B e. RR* /\ C e. RR* ) ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
19 |
11 18
|
pm2.61dan |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |