Step |
Hyp |
Ref |
Expression |
1 |
|
iccssre |
|- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) |
2 |
1
|
adantl |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( B [,] C ) C_ RR ) |
3 |
|
dfss4 |
|- ( ( B [,] C ) C_ RR <-> ( RR \ ( RR \ ( B [,] C ) ) ) = ( B [,] C ) ) |
4 |
2 3
|
sylib |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( RR \ ( B [,] C ) ) ) = ( B [,] C ) ) |
5 |
|
difreicc |
|- ( ( B e. RR /\ C e. RR ) -> ( RR \ ( B [,] C ) ) = ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) |
6 |
5
|
adantl |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( B [,] C ) ) = ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) |
7 |
6
|
difeq2d |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( RR \ ( B [,] C ) ) ) = ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) |
8 |
4 7
|
eqtr3d |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( B [,] C ) = ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) |
9 |
8
|
imaeq2d |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) = ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
10 |
|
ffun |
|- ( F : A --> RR -> Fun F ) |
11 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
12 |
10 11
|
syl |
|- ( F : A --> RR -> Fun `' `' F ) |
13 |
12
|
ad2antlr |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> Fun `' `' F ) |
14 |
|
imadif |
|- ( Fun `' `' F -> ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
15 |
13 14
|
syl |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
16 |
9 15
|
eqtrd |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
17 |
|
fimacnv |
|- ( F : A --> RR -> ( `' F " RR ) = A ) |
18 |
17
|
adantl |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " RR ) = A ) |
19 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
20 |
|
fdm |
|- ( F : A --> RR -> dom F = A ) |
21 |
20
|
eleq1d |
|- ( F : A --> RR -> ( dom F e. dom vol <-> A e. dom vol ) ) |
22 |
21
|
biimpac |
|- ( ( dom F e. dom vol /\ F : A --> RR ) -> A e. dom vol ) |
23 |
19 22
|
sylan |
|- ( ( F e. MblFn /\ F : A --> RR ) -> A e. dom vol ) |
24 |
18 23
|
eqeltrd |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " RR ) e. dom vol ) |
25 |
|
imaundi |
|- ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) = ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) |
26 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) B ) ) e. dom vol ) |
27 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( C (,) +oo ) ) e. dom vol ) |
28 |
|
unmbl |
|- ( ( ( `' F " ( -oo (,) B ) ) e. dom vol /\ ( `' F " ( C (,) +oo ) ) e. dom vol ) -> ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) e. dom vol ) |
29 |
26 27 28
|
syl2anc |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) e. dom vol ) |
30 |
25 29
|
eqeltrid |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) e. dom vol ) |
31 |
|
difmbl |
|- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
32 |
24 30 31
|
syl2anc |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
33 |
32
|
adantr |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
34 |
16 33
|
eqeltrd |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) e. dom vol ) |