| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssre |
|- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) |
| 2 |
1
|
adantl |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( B [,] C ) C_ RR ) |
| 3 |
|
dfss4 |
|- ( ( B [,] C ) C_ RR <-> ( RR \ ( RR \ ( B [,] C ) ) ) = ( B [,] C ) ) |
| 4 |
2 3
|
sylib |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( RR \ ( B [,] C ) ) ) = ( B [,] C ) ) |
| 5 |
|
difreicc |
|- ( ( B e. RR /\ C e. RR ) -> ( RR \ ( B [,] C ) ) = ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) |
| 6 |
5
|
adantl |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( B [,] C ) ) = ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) |
| 7 |
6
|
difeq2d |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( RR \ ( RR \ ( B [,] C ) ) ) = ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) |
| 8 |
4 7
|
eqtr3d |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( B [,] C ) = ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) |
| 9 |
8
|
imaeq2d |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) = ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
| 10 |
|
ffun |
|- ( F : A --> RR -> Fun F ) |
| 11 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
| 12 |
10 11
|
syl |
|- ( F : A --> RR -> Fun `' `' F ) |
| 13 |
12
|
ad2antlr |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> Fun `' `' F ) |
| 14 |
|
imadif |
|- ( Fun `' `' F -> ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
| 15 |
13 14
|
syl |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( RR \ ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
| 16 |
9 15
|
eqtrd |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) = ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) ) |
| 17 |
|
fimacnv |
|- ( F : A --> RR -> ( `' F " RR ) = A ) |
| 18 |
17
|
adantl |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " RR ) = A ) |
| 19 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
| 20 |
|
fdm |
|- ( F : A --> RR -> dom F = A ) |
| 21 |
20
|
eleq1d |
|- ( F : A --> RR -> ( dom F e. dom vol <-> A e. dom vol ) ) |
| 22 |
21
|
biimpac |
|- ( ( dom F e. dom vol /\ F : A --> RR ) -> A e. dom vol ) |
| 23 |
19 22
|
sylan |
|- ( ( F e. MblFn /\ F : A --> RR ) -> A e. dom vol ) |
| 24 |
18 23
|
eqeltrd |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " RR ) e. dom vol ) |
| 25 |
|
imaundi |
|- ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) = ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) |
| 26 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) B ) ) e. dom vol ) |
| 27 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( C (,) +oo ) ) e. dom vol ) |
| 28 |
|
unmbl |
|- ( ( ( `' F " ( -oo (,) B ) ) e. dom vol /\ ( `' F " ( C (,) +oo ) ) e. dom vol ) -> ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) e. dom vol ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " ( -oo (,) B ) ) u. ( `' F " ( C (,) +oo ) ) ) e. dom vol ) |
| 30 |
25 29
|
eqeltrid |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) e. dom vol ) |
| 31 |
|
difmbl |
|- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
| 32 |
24 30 31
|
syl2anc |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
| 33 |
32
|
adantr |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( `' F " RR ) \ ( `' F " ( ( -oo (,) B ) u. ( C (,) +oo ) ) ) ) e. dom vol ) |
| 34 |
16 33
|
eqeltrd |
|- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR /\ C e. RR ) ) -> ( `' F " ( B [,] C ) ) e. dom vol ) |