| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfimaopn.1 |
|- J = ( TopOpen ` CCfld ) |
| 2 |
|
oveq1 |
|- ( t = x -> ( t + ( _i x. w ) ) = ( x + ( _i x. w ) ) ) |
| 3 |
|
oveq2 |
|- ( w = y -> ( _i x. w ) = ( _i x. y ) ) |
| 4 |
3
|
oveq2d |
|- ( w = y -> ( x + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
| 5 |
2 4
|
cbvmpov |
|- ( t e. RR , w e. RR |-> ( t + ( _i x. w ) ) ) = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
| 6 |
|
eqid |
|- ( (,) " ( QQ X. QQ ) ) = ( (,) " ( QQ X. QQ ) ) |
| 7 |
|
eqid |
|- ran ( x e. ( (,) " ( QQ X. QQ ) ) , y e. ( (,) " ( QQ X. QQ ) ) |-> ( x X. y ) ) = ran ( x e. ( (,) " ( QQ X. QQ ) ) , y e. ( (,) " ( QQ X. QQ ) ) |-> ( x X. y ) ) |
| 8 |
1 5 6 7
|
mbfimaopnlem |
|- ( ( F e. MblFn /\ A e. J ) -> ( `' F " A ) e. dom vol ) |