Step |
Hyp |
Ref |
Expression |
1 |
|
mbfimaopn.1 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
mbfimaopn2.2 |
|- K = ( J |`t B ) |
3 |
2
|
eleq2i |
|- ( C e. K <-> C e. ( J |`t B ) ) |
4 |
1
|
cnfldtop |
|- J e. Top |
5 |
|
simp3 |
|- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> B C_ CC ) |
6 |
|
cnex |
|- CC e. _V |
7 |
|
ssexg |
|- ( ( B C_ CC /\ CC e. _V ) -> B e. _V ) |
8 |
5 6 7
|
sylancl |
|- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> B e. _V ) |
9 |
|
elrest |
|- ( ( J e. Top /\ B e. _V ) -> ( C e. ( J |`t B ) <-> E. u e. J C = ( u i^i B ) ) ) |
10 |
4 8 9
|
sylancr |
|- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. ( J |`t B ) <-> E. u e. J C = ( u i^i B ) ) ) |
11 |
3 10
|
syl5bb |
|- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. K <-> E. u e. J C = ( u i^i B ) ) ) |
12 |
|
simpl2 |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> F : A --> B ) |
13 |
|
ffun |
|- ( F : A --> B -> Fun F ) |
14 |
|
inpreima |
|- ( Fun F -> ( `' F " ( u i^i B ) ) = ( ( `' F " u ) i^i ( `' F " B ) ) ) |
15 |
12 13 14
|
3syl |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " ( u i^i B ) ) = ( ( `' F " u ) i^i ( `' F " B ) ) ) |
16 |
1
|
mbfimaopn |
|- ( ( F e. MblFn /\ u e. J ) -> ( `' F " u ) e. dom vol ) |
17 |
16
|
3ad2antl1 |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " u ) e. dom vol ) |
18 |
|
fimacnv |
|- ( F : A --> B -> ( `' F " B ) = A ) |
19 |
|
fdm |
|- ( F : A --> B -> dom F = A ) |
20 |
18 19
|
eqtr4d |
|- ( F : A --> B -> ( `' F " B ) = dom F ) |
21 |
12 20
|
syl |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " B ) = dom F ) |
22 |
|
simpl1 |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> F e. MblFn ) |
23 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
24 |
22 23
|
syl |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> dom F e. dom vol ) |
25 |
21 24
|
eqeltrd |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " B ) e. dom vol ) |
26 |
|
inmbl |
|- ( ( ( `' F " u ) e. dom vol /\ ( `' F " B ) e. dom vol ) -> ( ( `' F " u ) i^i ( `' F " B ) ) e. dom vol ) |
27 |
17 25 26
|
syl2anc |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( ( `' F " u ) i^i ( `' F " B ) ) e. dom vol ) |
28 |
15 27
|
eqeltrd |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " ( u i^i B ) ) e. dom vol ) |
29 |
|
imaeq2 |
|- ( C = ( u i^i B ) -> ( `' F " C ) = ( `' F " ( u i^i B ) ) ) |
30 |
29
|
eleq1d |
|- ( C = ( u i^i B ) -> ( ( `' F " C ) e. dom vol <-> ( `' F " ( u i^i B ) ) e. dom vol ) ) |
31 |
28 30
|
syl5ibrcom |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( C = ( u i^i B ) -> ( `' F " C ) e. dom vol ) ) |
32 |
31
|
rexlimdva |
|- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( E. u e. J C = ( u i^i B ) -> ( `' F " C ) e. dom vol ) ) |
33 |
11 32
|
sylbid |
|- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. K -> ( `' F " C ) e. dom vol ) ) |
34 |
33
|
imp |
|- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ C e. K ) -> ( `' F " C ) e. dom vol ) |