| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfimaopn.1 |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 |  | mbfimaopn2.2 |  |-  K = ( J |`t B ) | 
						
							| 3 | 2 | eleq2i |  |-  ( C e. K <-> C e. ( J |`t B ) ) | 
						
							| 4 | 1 | cnfldtop |  |-  J e. Top | 
						
							| 5 |  | simp3 |  |-  ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> B C_ CC ) | 
						
							| 6 |  | cnex |  |-  CC e. _V | 
						
							| 7 |  | ssexg |  |-  ( ( B C_ CC /\ CC e. _V ) -> B e. _V ) | 
						
							| 8 | 5 6 7 | sylancl |  |-  ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> B e. _V ) | 
						
							| 9 |  | elrest |  |-  ( ( J e. Top /\ B e. _V ) -> ( C e. ( J |`t B ) <-> E. u e. J C = ( u i^i B ) ) ) | 
						
							| 10 | 4 8 9 | sylancr |  |-  ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. ( J |`t B ) <-> E. u e. J C = ( u i^i B ) ) ) | 
						
							| 11 | 3 10 | bitrid |  |-  ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. K <-> E. u e. J C = ( u i^i B ) ) ) | 
						
							| 12 |  | simpl2 |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> F : A --> B ) | 
						
							| 13 |  | ffun |  |-  ( F : A --> B -> Fun F ) | 
						
							| 14 |  | inpreima |  |-  ( Fun F -> ( `' F " ( u i^i B ) ) = ( ( `' F " u ) i^i ( `' F " B ) ) ) | 
						
							| 15 | 12 13 14 | 3syl |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " ( u i^i B ) ) = ( ( `' F " u ) i^i ( `' F " B ) ) ) | 
						
							| 16 | 1 | mbfimaopn |  |-  ( ( F e. MblFn /\ u e. J ) -> ( `' F " u ) e. dom vol ) | 
						
							| 17 | 16 | 3ad2antl1 |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " u ) e. dom vol ) | 
						
							| 18 |  | fimacnv |  |-  ( F : A --> B -> ( `' F " B ) = A ) | 
						
							| 19 |  | fdm |  |-  ( F : A --> B -> dom F = A ) | 
						
							| 20 | 18 19 | eqtr4d |  |-  ( F : A --> B -> ( `' F " B ) = dom F ) | 
						
							| 21 | 12 20 | syl |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " B ) = dom F ) | 
						
							| 22 |  | simpl1 |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> F e. MblFn ) | 
						
							| 23 |  | mbfdm |  |-  ( F e. MblFn -> dom F e. dom vol ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> dom F e. dom vol ) | 
						
							| 25 | 21 24 | eqeltrd |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " B ) e. dom vol ) | 
						
							| 26 |  | inmbl |  |-  ( ( ( `' F " u ) e. dom vol /\ ( `' F " B ) e. dom vol ) -> ( ( `' F " u ) i^i ( `' F " B ) ) e. dom vol ) | 
						
							| 27 | 17 25 26 | syl2anc |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( ( `' F " u ) i^i ( `' F " B ) ) e. dom vol ) | 
						
							| 28 | 15 27 | eqeltrd |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " ( u i^i B ) ) e. dom vol ) | 
						
							| 29 |  | imaeq2 |  |-  ( C = ( u i^i B ) -> ( `' F " C ) = ( `' F " ( u i^i B ) ) ) | 
						
							| 30 | 29 | eleq1d |  |-  ( C = ( u i^i B ) -> ( ( `' F " C ) e. dom vol <-> ( `' F " ( u i^i B ) ) e. dom vol ) ) | 
						
							| 31 | 28 30 | syl5ibrcom |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( C = ( u i^i B ) -> ( `' F " C ) e. dom vol ) ) | 
						
							| 32 | 31 | rexlimdva |  |-  ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( E. u e. J C = ( u i^i B ) -> ( `' F " C ) e. dom vol ) ) | 
						
							| 33 | 11 32 | sylbid |  |-  ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. K -> ( `' F " C ) e. dom vol ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ C e. K ) -> ( `' F " C ) e. dom vol ) |