Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmulc2re.1 |
|- ( ph -> F e. MblFn ) |
2 |
|
mbfmulc2re.2 |
|- ( ph -> B e. RR ) |
3 |
|
mbfmulc2lem.3 |
|- ( ph -> F : A --> RR ) |
4 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
5 |
4
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
6 |
|
fconst6g |
|- ( B e. RR -> ( A X. { B } ) : A --> RR ) |
7 |
2 6
|
syl |
|- ( ph -> ( A X. { B } ) : A --> RR ) |
8 |
3
|
fdmd |
|- ( ph -> dom F = A ) |
9 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
10 |
1 9
|
syl |
|- ( ph -> dom F e. dom vol ) |
11 |
8 10
|
eqeltrrd |
|- ( ph -> A e. dom vol ) |
12 |
|
inidm |
|- ( A i^i A ) = A |
13 |
5 7 3 11 11 12
|
off |
|- ( ph -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
14 |
13
|
adantr |
|- ( ( ph /\ B < 0 ) -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
15 |
11
|
adantr |
|- ( ( ph /\ B < 0 ) -> A e. dom vol ) |
16 |
|
simprl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR ) |
17 |
16
|
rexrd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR* ) |
18 |
|
elioopnf |
|- ( y e. RR* -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
19 |
17 18
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
20 |
13
|
ffvelrnda |
|- ( ( ph /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
21 |
20
|
ad2ant2rl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
22 |
21
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
23 |
3
|
ffvelrnda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. RR ) |
24 |
23
|
ad2ant2rl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. RR ) |
25 |
24
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( y / B ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
26 |
|
simprr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> z e. A ) |
27 |
11
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> A e. dom vol ) |
28 |
2
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR ) |
29 |
3
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> F : A --> RR ) |
30 |
29
|
ffnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> F Fn A ) |
31 |
|
eqidd |
|- ( ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
32 |
27 28 30 31
|
ofc1 |
|- ( ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
33 |
26 32
|
mpdan |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
34 |
33
|
breq2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
35 |
33 21
|
eqeltrrd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( B x. ( F ` z ) ) e. RR ) |
36 |
16 35
|
ltnegd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( B x. ( F ` z ) ) <-> -u ( B x. ( F ` z ) ) < -u y ) ) |
37 |
28
|
recnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B e. CC ) |
38 |
24
|
recnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. CC ) |
39 |
37 38
|
mulneg1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u B x. ( F ` z ) ) = -u ( B x. ( F ` z ) ) ) |
40 |
39
|
breq1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> -u ( B x. ( F ` z ) ) < -u y ) ) |
41 |
16
|
renegcld |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> -u y e. RR ) |
42 |
28
|
renegcld |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> -u B e. RR ) |
43 |
|
simplr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B < 0 ) |
44 |
28
|
lt0neg1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( B < 0 <-> 0 < -u B ) ) |
45 |
43 44
|
mpbid |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> 0 < -u B ) |
46 |
|
ltmuldiv2 |
|- ( ( ( F ` z ) e. RR /\ -u y e. RR /\ ( -u B e. RR /\ 0 < -u B ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> ( F ` z ) < ( -u y / -u B ) ) ) |
47 |
24 41 42 45 46
|
syl112anc |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> ( F ` z ) < ( -u y / -u B ) ) ) |
48 |
36 40 47
|
3bitr2rd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( -u y / -u B ) <-> y < ( B x. ( F ` z ) ) ) ) |
49 |
16
|
recnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. CC ) |
50 |
43
|
lt0ne0d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B =/= 0 ) |
51 |
49 37 50
|
div2negd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u y / -u B ) = ( y / B ) ) |
52 |
51
|
breq2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( -u y / -u B ) <-> ( F ` z ) < ( y / B ) ) ) |
53 |
34 48 52
|
3bitr2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) < ( y / B ) ) ) |
54 |
16 28 50
|
redivcld |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR ) |
55 |
54
|
rexrd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR* ) |
56 |
|
elioomnf |
|- ( ( y / B ) e. RR* -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
57 |
55 56
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
58 |
25 53 57
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
59 |
19 22 58
|
3bitr2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
60 |
59
|
anassrs |
|- ( ( ( ( ph /\ B < 0 ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
61 |
60
|
pm5.32da |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
62 |
13
|
ffnd |
|- ( ph -> ( ( A X. { B } ) oF x. F ) Fn A ) |
63 |
62
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( A X. { B } ) oF x. F ) Fn A ) |
64 |
|
elpreima |
|- ( ( ( A X. { B } ) oF x. F ) Fn A -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
65 |
63 64
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
66 |
3
|
ffnd |
|- ( ph -> F Fn A ) |
67 |
66
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> F Fn A ) |
68 |
|
elpreima |
|- ( F Fn A -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
69 |
67 68
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
70 |
61 65 69
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> z e. ( `' F " ( -oo (,) ( y / B ) ) ) ) ) |
71 |
70
|
eqrdv |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) = ( `' F " ( -oo (,) ( y / B ) ) ) ) |
72 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
73 |
1 3 72
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
74 |
73
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
75 |
71 74
|
eqeltrd |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) e. dom vol ) |
76 |
|
elioomnf |
|- ( y e. RR* -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
77 |
17 76
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
78 |
21
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
79 |
24
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
80 |
33
|
breq1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( B x. ( F ` z ) ) < y ) ) |
81 |
39
|
breq2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u y < ( -u B x. ( F ` z ) ) <-> -u y < -u ( B x. ( F ` z ) ) ) ) |
82 |
51
|
breq1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> ( y / B ) < ( F ` z ) ) ) |
83 |
|
ltdivmul |
|- ( ( -u y e. RR /\ ( F ` z ) e. RR /\ ( -u B e. RR /\ 0 < -u B ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
84 |
41 24 42 45 83
|
syl112anc |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
85 |
82 84
|
bitr3d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
86 |
35 16
|
ltnegd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( B x. ( F ` z ) ) < y <-> -u y < -u ( B x. ( F ` z ) ) ) ) |
87 |
81 85 86
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( B x. ( F ` z ) ) < y ) ) |
88 |
80 87
|
bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( y / B ) < ( F ` z ) ) ) |
89 |
|
elioopnf |
|- ( ( y / B ) e. RR* -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
90 |
55 89
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
91 |
79 88 90
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
92 |
77 78 91
|
3bitr2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
93 |
92
|
anassrs |
|- ( ( ( ( ph /\ B < 0 ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
94 |
93
|
pm5.32da |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
95 |
|
elpreima |
|- ( ( ( A X. { B } ) oF x. F ) Fn A -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
96 |
63 95
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
97 |
|
elpreima |
|- ( F Fn A -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
98 |
67 97
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
99 |
94 96 98
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> z e. ( `' F " ( ( y / B ) (,) +oo ) ) ) ) |
100 |
99
|
eqrdv |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) = ( `' F " ( ( y / B ) (,) +oo ) ) ) |
101 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
102 |
1 3 101
|
syl2anc |
|- ( ph -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
103 |
102
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
104 |
100 103
|
eqeltrd |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) e. dom vol ) |
105 |
14 15 75 104
|
ismbf2d |
|- ( ( ph /\ B < 0 ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
106 |
11
|
adantr |
|- ( ( ph /\ B = 0 ) -> A e. dom vol ) |
107 |
3
|
adantr |
|- ( ( ph /\ B = 0 ) -> F : A --> RR ) |
108 |
|
simpr |
|- ( ( ph /\ B = 0 ) -> B = 0 ) |
109 |
|
0cn |
|- 0 e. CC |
110 |
108 109
|
eqeltrdi |
|- ( ( ph /\ B = 0 ) -> B e. CC ) |
111 |
|
0cnd |
|- ( ( ph /\ B = 0 ) -> 0 e. CC ) |
112 |
|
simplr |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> B = 0 ) |
113 |
112
|
oveq1d |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( B x. x ) = ( 0 x. x ) ) |
114 |
|
mul02lem2 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
115 |
114
|
adantl |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
116 |
113 115
|
eqtrd |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( B x. x ) = 0 ) |
117 |
106 107 110 111 116
|
caofid2 |
|- ( ( ph /\ B = 0 ) -> ( ( A X. { B } ) oF x. F ) = ( A X. { 0 } ) ) |
118 |
|
mbfconst |
|- ( ( A e. dom vol /\ 0 e. CC ) -> ( A X. { 0 } ) e. MblFn ) |
119 |
106 109 118
|
sylancl |
|- ( ( ph /\ B = 0 ) -> ( A X. { 0 } ) e. MblFn ) |
120 |
117 119
|
eqeltrd |
|- ( ( ph /\ B = 0 ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
121 |
13
|
adantr |
|- ( ( ph /\ 0 < B ) -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
122 |
11
|
adantr |
|- ( ( ph /\ 0 < B ) -> A e. dom vol ) |
123 |
|
simprl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR ) |
124 |
123
|
rexrd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR* ) |
125 |
124 18
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
126 |
20
|
ad2ant2rl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
127 |
126
|
biantrurd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
128 |
23
|
ad2ant2rl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. RR ) |
129 |
128
|
biantrurd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
130 |
|
eqidd |
|- ( ( ph /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
131 |
11 2 66 130
|
ofc1 |
|- ( ( ph /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
132 |
131
|
ad2ant2rl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
133 |
132
|
breq2d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
134 |
2
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR ) |
135 |
|
simplr |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> 0 < B ) |
136 |
|
ltdivmul |
|- ( ( y e. RR /\ ( F ` z ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( y / B ) < ( F ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
137 |
123 128 134 135 136
|
syl112anc |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
138 |
133 137
|
bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( y / B ) < ( F ` z ) ) ) |
139 |
134 135
|
elrpd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR+ ) |
140 |
123 139
|
rerpdivcld |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR ) |
141 |
140
|
rexrd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR* ) |
142 |
141 89
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
143 |
129 138 142
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
144 |
125 127 143
|
3bitr2d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
145 |
144
|
anassrs |
|- ( ( ( ( ph /\ 0 < B ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
146 |
145
|
pm5.32da |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
147 |
62
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( A X. { B } ) oF x. F ) Fn A ) |
148 |
147 64
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
149 |
66
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> F Fn A ) |
150 |
149 97
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
151 |
146 148 150
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> z e. ( `' F " ( ( y / B ) (,) +oo ) ) ) ) |
152 |
151
|
eqrdv |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) = ( `' F " ( ( y / B ) (,) +oo ) ) ) |
153 |
102
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
154 |
152 153
|
eqeltrd |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) e. dom vol ) |
155 |
124 76
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
156 |
126
|
biantrurd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
157 |
|
ltmuldiv2 |
|- ( ( ( F ` z ) e. RR /\ y e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. ( F ` z ) ) < y <-> ( F ` z ) < ( y / B ) ) ) |
158 |
128 123 134 135 157
|
syl112anc |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( B x. ( F ` z ) ) < y <-> ( F ` z ) < ( y / B ) ) ) |
159 |
132
|
breq1d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( B x. ( F ` z ) ) < y ) ) |
160 |
141 56
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
161 |
128 160
|
mpbirand |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( F ` z ) < ( y / B ) ) ) |
162 |
158 159 161
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
163 |
155 156 162
|
3bitr2d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
164 |
163
|
anassrs |
|- ( ( ( ( ph /\ 0 < B ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
165 |
164
|
pm5.32da |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
166 |
147 95
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
167 |
149 68
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
168 |
165 166 167
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> z e. ( `' F " ( -oo (,) ( y / B ) ) ) ) ) |
169 |
168
|
eqrdv |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) = ( `' F " ( -oo (,) ( y / B ) ) ) ) |
170 |
73
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
171 |
169 170
|
eqeltrd |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) e. dom vol ) |
172 |
121 122 154 171
|
ismbf2d |
|- ( ( ph /\ 0 < B ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
173 |
|
0re |
|- 0 e. RR |
174 |
|
lttri4 |
|- ( ( B e. RR /\ 0 e. RR ) -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
175 |
2 173 174
|
sylancl |
|- ( ph -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
176 |
105 120 172 175
|
mpjao3dan |
|- ( ph -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |