| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmulc2re.1 |
|- ( ph -> F e. MblFn ) |
| 2 |
|
mbfmulc2re.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
mbfmulc2lem.3 |
|- ( ph -> F : A --> RR ) |
| 4 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
| 5 |
4
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 6 |
|
fconst6g |
|- ( B e. RR -> ( A X. { B } ) : A --> RR ) |
| 7 |
2 6
|
syl |
|- ( ph -> ( A X. { B } ) : A --> RR ) |
| 8 |
3
|
fdmd |
|- ( ph -> dom F = A ) |
| 9 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
| 10 |
1 9
|
syl |
|- ( ph -> dom F e. dom vol ) |
| 11 |
8 10
|
eqeltrrd |
|- ( ph -> A e. dom vol ) |
| 12 |
|
inidm |
|- ( A i^i A ) = A |
| 13 |
5 7 3 11 11 12
|
off |
|- ( ph -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ B < 0 ) -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
| 15 |
11
|
adantr |
|- ( ( ph /\ B < 0 ) -> A e. dom vol ) |
| 16 |
|
simprl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR ) |
| 17 |
16
|
rexrd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR* ) |
| 18 |
|
elioopnf |
|- ( y e. RR* -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 20 |
13
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
| 21 |
20
|
ad2ant2rl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
| 22 |
21
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 23 |
3
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. RR ) |
| 24 |
23
|
ad2ant2rl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. RR ) |
| 25 |
24
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( y / B ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
| 26 |
|
simprr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> z e. A ) |
| 27 |
11
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> A e. dom vol ) |
| 28 |
2
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR ) |
| 29 |
3
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> F : A --> RR ) |
| 30 |
29
|
ffnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> F Fn A ) |
| 31 |
|
eqidd |
|- ( ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
| 32 |
27 28 30 31
|
ofc1 |
|- ( ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 33 |
26 32
|
mpdan |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 34 |
33
|
breq2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 35 |
33 21
|
eqeltrrd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( B x. ( F ` z ) ) e. RR ) |
| 36 |
16 35
|
ltnegd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( B x. ( F ` z ) ) <-> -u ( B x. ( F ` z ) ) < -u y ) ) |
| 37 |
28
|
recnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B e. CC ) |
| 38 |
24
|
recnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. CC ) |
| 39 |
37 38
|
mulneg1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u B x. ( F ` z ) ) = -u ( B x. ( F ` z ) ) ) |
| 40 |
39
|
breq1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> -u ( B x. ( F ` z ) ) < -u y ) ) |
| 41 |
16
|
renegcld |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> -u y e. RR ) |
| 42 |
28
|
renegcld |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> -u B e. RR ) |
| 43 |
|
simplr |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B < 0 ) |
| 44 |
28
|
lt0neg1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( B < 0 <-> 0 < -u B ) ) |
| 45 |
43 44
|
mpbid |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> 0 < -u B ) |
| 46 |
|
ltmuldiv2 |
|- ( ( ( F ` z ) e. RR /\ -u y e. RR /\ ( -u B e. RR /\ 0 < -u B ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> ( F ` z ) < ( -u y / -u B ) ) ) |
| 47 |
24 41 42 45 46
|
syl112anc |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> ( F ` z ) < ( -u y / -u B ) ) ) |
| 48 |
36 40 47
|
3bitr2rd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( -u y / -u B ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 49 |
16
|
recnd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. CC ) |
| 50 |
43
|
lt0ne0d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B =/= 0 ) |
| 51 |
49 37 50
|
div2negd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u y / -u B ) = ( y / B ) ) |
| 52 |
51
|
breq2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( -u y / -u B ) <-> ( F ` z ) < ( y / B ) ) ) |
| 53 |
34 48 52
|
3bitr2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) < ( y / B ) ) ) |
| 54 |
16 28 50
|
redivcld |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR ) |
| 55 |
54
|
rexrd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR* ) |
| 56 |
|
elioomnf |
|- ( ( y / B ) e. RR* -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
| 57 |
55 56
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
| 58 |
25 53 57
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 59 |
19 22 58
|
3bitr2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 60 |
59
|
anassrs |
|- ( ( ( ( ph /\ B < 0 ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 61 |
60
|
pm5.32da |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 62 |
13
|
ffnd |
|- ( ph -> ( ( A X. { B } ) oF x. F ) Fn A ) |
| 63 |
62
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( A X. { B } ) oF x. F ) Fn A ) |
| 64 |
|
elpreima |
|- ( ( ( A X. { B } ) oF x. F ) Fn A -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
| 65 |
63 64
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
| 66 |
3
|
ffnd |
|- ( ph -> F Fn A ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> F Fn A ) |
| 68 |
|
elpreima |
|- ( F Fn A -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 69 |
67 68
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 70 |
61 65 69
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> z e. ( `' F " ( -oo (,) ( y / B ) ) ) ) ) |
| 71 |
70
|
eqrdv |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) = ( `' F " ( -oo (,) ( y / B ) ) ) ) |
| 72 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
| 73 |
1 3 72
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
| 75 |
71 74
|
eqeltrd |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) e. dom vol ) |
| 76 |
|
elioomnf |
|- ( y e. RR* -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 77 |
17 76
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 78 |
21
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 79 |
24
|
biantrurd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 80 |
33
|
breq1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( B x. ( F ` z ) ) < y ) ) |
| 81 |
39
|
breq2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u y < ( -u B x. ( F ` z ) ) <-> -u y < -u ( B x. ( F ` z ) ) ) ) |
| 82 |
51
|
breq1d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> ( y / B ) < ( F ` z ) ) ) |
| 83 |
|
ltdivmul |
|- ( ( -u y e. RR /\ ( F ` z ) e. RR /\ ( -u B e. RR /\ 0 < -u B ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
| 84 |
41 24 42 45 83
|
syl112anc |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
| 85 |
82 84
|
bitr3d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
| 86 |
35 16
|
ltnegd |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( B x. ( F ` z ) ) < y <-> -u y < -u ( B x. ( F ` z ) ) ) ) |
| 87 |
81 85 86
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( B x. ( F ` z ) ) < y ) ) |
| 88 |
80 87
|
bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( y / B ) < ( F ` z ) ) ) |
| 89 |
|
elioopnf |
|- ( ( y / B ) e. RR* -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 90 |
55 89
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 91 |
79 88 90
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 92 |
77 78 91
|
3bitr2d |
|- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 93 |
92
|
anassrs |
|- ( ( ( ( ph /\ B < 0 ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 94 |
93
|
pm5.32da |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 95 |
|
elpreima |
|- ( ( ( A X. { B } ) oF x. F ) Fn A -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
| 96 |
63 95
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
| 97 |
|
elpreima |
|- ( F Fn A -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 98 |
67 97
|
syl |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 99 |
94 96 98
|
3bitr4d |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> z e. ( `' F " ( ( y / B ) (,) +oo ) ) ) ) |
| 100 |
99
|
eqrdv |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) = ( `' F " ( ( y / B ) (,) +oo ) ) ) |
| 101 |
|
mbfima |
|- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
| 102 |
1 3 101
|
syl2anc |
|- ( ph -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
| 103 |
102
|
ad2antrr |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
| 104 |
100 103
|
eqeltrd |
|- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) e. dom vol ) |
| 105 |
14 15 75 104
|
ismbf2d |
|- ( ( ph /\ B < 0 ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| 106 |
11
|
adantr |
|- ( ( ph /\ B = 0 ) -> A e. dom vol ) |
| 107 |
3
|
adantr |
|- ( ( ph /\ B = 0 ) -> F : A --> RR ) |
| 108 |
|
simpr |
|- ( ( ph /\ B = 0 ) -> B = 0 ) |
| 109 |
|
0cn |
|- 0 e. CC |
| 110 |
108 109
|
eqeltrdi |
|- ( ( ph /\ B = 0 ) -> B e. CC ) |
| 111 |
|
0cnd |
|- ( ( ph /\ B = 0 ) -> 0 e. CC ) |
| 112 |
|
simplr |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> B = 0 ) |
| 113 |
112
|
oveq1d |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( B x. x ) = ( 0 x. x ) ) |
| 114 |
|
mul02lem2 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
| 115 |
114
|
adantl |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 116 |
113 115
|
eqtrd |
|- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( B x. x ) = 0 ) |
| 117 |
106 107 110 111 116
|
caofid2 |
|- ( ( ph /\ B = 0 ) -> ( ( A X. { B } ) oF x. F ) = ( A X. { 0 } ) ) |
| 118 |
|
mbfconst |
|- ( ( A e. dom vol /\ 0 e. CC ) -> ( A X. { 0 } ) e. MblFn ) |
| 119 |
106 109 118
|
sylancl |
|- ( ( ph /\ B = 0 ) -> ( A X. { 0 } ) e. MblFn ) |
| 120 |
117 119
|
eqeltrd |
|- ( ( ph /\ B = 0 ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| 121 |
13
|
adantr |
|- ( ( ph /\ 0 < B ) -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
| 122 |
11
|
adantr |
|- ( ( ph /\ 0 < B ) -> A e. dom vol ) |
| 123 |
|
simprl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR ) |
| 124 |
123
|
rexrd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR* ) |
| 125 |
124 18
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 126 |
20
|
ad2ant2rl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
| 127 |
126
|
biantrurd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 128 |
23
|
ad2ant2rl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. RR ) |
| 129 |
128
|
biantrurd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 130 |
|
eqidd |
|- ( ( ph /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
| 131 |
11 2 66 130
|
ofc1 |
|- ( ( ph /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 132 |
131
|
ad2ant2rl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 133 |
132
|
breq2d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 134 |
2
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR ) |
| 135 |
|
simplr |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> 0 < B ) |
| 136 |
|
ltdivmul |
|- ( ( y e. RR /\ ( F ` z ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( y / B ) < ( F ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 137 |
123 128 134 135 136
|
syl112anc |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 138 |
133 137
|
bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( y / B ) < ( F ` z ) ) ) |
| 139 |
134 135
|
elrpd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR+ ) |
| 140 |
123 139
|
rerpdivcld |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR ) |
| 141 |
140
|
rexrd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR* ) |
| 142 |
141 89
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 143 |
129 138 142
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 144 |
125 127 143
|
3bitr2d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 145 |
144
|
anassrs |
|- ( ( ( ( ph /\ 0 < B ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 146 |
145
|
pm5.32da |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 147 |
62
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( A X. { B } ) oF x. F ) Fn A ) |
| 148 |
147 64
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
| 149 |
66
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> F Fn A ) |
| 150 |
149 97
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 151 |
146 148 150
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> z e. ( `' F " ( ( y / B ) (,) +oo ) ) ) ) |
| 152 |
151
|
eqrdv |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) = ( `' F " ( ( y / B ) (,) +oo ) ) ) |
| 153 |
102
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
| 154 |
152 153
|
eqeltrd |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) e. dom vol ) |
| 155 |
124 76
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 156 |
126
|
biantrurd |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 157 |
|
ltmuldiv2 |
|- ( ( ( F ` z ) e. RR /\ y e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. ( F ` z ) ) < y <-> ( F ` z ) < ( y / B ) ) ) |
| 158 |
128 123 134 135 157
|
syl112anc |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( B x. ( F ` z ) ) < y <-> ( F ` z ) < ( y / B ) ) ) |
| 159 |
132
|
breq1d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( B x. ( F ` z ) ) < y ) ) |
| 160 |
141 56
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
| 161 |
128 160
|
mpbirand |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( F ` z ) < ( y / B ) ) ) |
| 162 |
158 159 161
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 163 |
155 156 162
|
3bitr2d |
|- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 164 |
163
|
anassrs |
|- ( ( ( ( ph /\ 0 < B ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 165 |
164
|
pm5.32da |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 166 |
147 95
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
| 167 |
149 68
|
syl |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 168 |
165 166 167
|
3bitr4d |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> z e. ( `' F " ( -oo (,) ( y / B ) ) ) ) ) |
| 169 |
168
|
eqrdv |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) = ( `' F " ( -oo (,) ( y / B ) ) ) ) |
| 170 |
73
|
ad2antrr |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
| 171 |
169 170
|
eqeltrd |
|- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) e. dom vol ) |
| 172 |
121 122 154 171
|
ismbf2d |
|- ( ( ph /\ 0 < B ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| 173 |
|
0re |
|- 0 e. RR |
| 174 |
|
lttri4 |
|- ( ( B e. RR /\ 0 e. RR ) -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
| 175 |
2 173 174
|
sylancl |
|- ( ph -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
| 176 |
105 120 172 175
|
mpjao3dan |
|- ( ph -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |