Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmul.1 |
|- ( ph -> F e. MblFn ) |
2 |
|
mbfmul.2 |
|- ( ph -> G e. MblFn ) |
3 |
|
mbfmul.3 |
|- ( ph -> F : A --> RR ) |
4 |
|
mbfmul.4 |
|- ( ph -> G : A --> RR ) |
5 |
|
mbfmul.5 |
|- ( ph -> P : NN --> dom S.1 ) |
6 |
|
mbfmul.6 |
|- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
7 |
|
mbfmul.7 |
|- ( ph -> Q : NN --> dom S.1 ) |
8 |
|
mbfmul.8 |
|- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) ) |
9 |
3
|
ffnd |
|- ( ph -> F Fn A ) |
10 |
4
|
ffnd |
|- ( ph -> G Fn A ) |
11 |
3
|
fdmd |
|- ( ph -> dom F = A ) |
12 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
13 |
1 12
|
syl |
|- ( ph -> dom F e. dom vol ) |
14 |
11 13
|
eqeltrrd |
|- ( ph -> A e. dom vol ) |
15 |
|
inidm |
|- ( A i^i A ) = A |
16 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
17 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
18 |
9 10 14 14 15 16 17
|
offval |
|- ( ph -> ( F oF x. G ) = ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) ) |
19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
20 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
21 |
|
1zzd |
|- ( ( ph /\ x e. A ) -> 1 e. ZZ ) |
22 |
|
nnex |
|- NN e. _V |
23 |
22
|
mptex |
|- ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. _V |
24 |
23
|
a1i |
|- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. _V ) |
25 |
5
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( P ` n ) e. dom S.1 ) |
26 |
|
i1ff |
|- ( ( P ` n ) e. dom S.1 -> ( P ` n ) : RR --> RR ) |
27 |
25 26
|
syl |
|- ( ( ph /\ n e. NN ) -> ( P ` n ) : RR --> RR ) |
28 |
27
|
adantlr |
|- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( P ` n ) : RR --> RR ) |
29 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
30 |
14 29
|
syl |
|- ( ph -> A C_ RR ) |
31 |
30
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> x e. RR ) |
33 |
28 32
|
ffvelrnd |
|- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( P ` n ) ` x ) e. RR ) |
34 |
33
|
recnd |
|- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( P ` n ) ` x ) e. CC ) |
35 |
34
|
fmpttd |
|- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( P ` n ) ` x ) ) : NN --> CC ) |
36 |
35
|
ffvelrnda |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) e. CC ) |
37 |
7
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( Q ` n ) e. dom S.1 ) |
38 |
|
i1ff |
|- ( ( Q ` n ) e. dom S.1 -> ( Q ` n ) : RR --> RR ) |
39 |
37 38
|
syl |
|- ( ( ph /\ n e. NN ) -> ( Q ` n ) : RR --> RR ) |
40 |
39
|
adantlr |
|- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( Q ` n ) : RR --> RR ) |
41 |
40 32
|
ffvelrnd |
|- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( Q ` n ) ` x ) e. RR ) |
42 |
41
|
recnd |
|- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( Q ` n ) ` x ) e. CC ) |
43 |
42
|
fmpttd |
|- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) : NN --> CC ) |
44 |
43
|
ffvelrnda |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) e. CC ) |
45 |
|
fveq2 |
|- ( n = k -> ( P ` n ) = ( P ` k ) ) |
46 |
45
|
fveq1d |
|- ( n = k -> ( ( P ` n ) ` x ) = ( ( P ` k ) ` x ) ) |
47 |
|
fveq2 |
|- ( n = k -> ( Q ` n ) = ( Q ` k ) ) |
48 |
47
|
fveq1d |
|- ( n = k -> ( ( Q ` n ) ` x ) = ( ( Q ` k ) ` x ) ) |
49 |
46 48
|
oveq12d |
|- ( n = k -> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
50 |
|
eqid |
|- ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) = ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |
51 |
|
ovex |
|- ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) e. _V |
52 |
49 50 51
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ` k ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
53 |
52
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ` k ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
54 |
|
eqid |
|- ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( n e. NN |-> ( ( P ` n ) ` x ) ) |
55 |
|
fvex |
|- ( ( P ` k ) ` x ) e. _V |
56 |
46 54 55
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) = ( ( P ` k ) ` x ) ) |
57 |
|
eqid |
|- ( n e. NN |-> ( ( Q ` n ) ` x ) ) = ( n e. NN |-> ( ( Q ` n ) ` x ) ) |
58 |
|
fvex |
|- ( ( Q ` k ) ` x ) e. _V |
59 |
48 57 58
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) = ( ( Q ` k ) ` x ) ) |
60 |
56 59
|
oveq12d |
|- ( k e. NN -> ( ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) x. ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
61 |
60
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) x. ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
62 |
53 61
|
eqtr4d |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) x. ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) ) ) |
63 |
19 21 6 24 8 36 44 62
|
climmul |
|- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ~~> ( ( F ` x ) x. ( G ` x ) ) ) |
64 |
30
|
adantr |
|- ( ( ph /\ n e. NN ) -> A C_ RR ) |
65 |
64
|
resmptd |
|- ( ( ph /\ n e. NN ) -> ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |` A ) = ( x e. A |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ) |
66 |
27
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( P ` n ) Fn RR ) |
67 |
39
|
ffnd |
|- ( ( ph /\ n e. NN ) -> ( Q ` n ) Fn RR ) |
68 |
|
reex |
|- RR e. _V |
69 |
68
|
a1i |
|- ( ( ph /\ n e. NN ) -> RR e. _V ) |
70 |
|
inidm |
|- ( RR i^i RR ) = RR |
71 |
|
eqidd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( P ` n ) ` x ) = ( ( P ` n ) ` x ) ) |
72 |
|
eqidd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( Q ` n ) ` x ) = ( ( Q ` n ) ` x ) ) |
73 |
66 67 69 69 70 71 72
|
offval |
|- ( ( ph /\ n e. NN ) -> ( ( P ` n ) oF x. ( Q ` n ) ) = ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ) |
74 |
25 37
|
i1fmul |
|- ( ( ph /\ n e. NN ) -> ( ( P ` n ) oF x. ( Q ` n ) ) e. dom S.1 ) |
75 |
|
i1fmbf |
|- ( ( ( P ` n ) oF x. ( Q ` n ) ) e. dom S.1 -> ( ( P ` n ) oF x. ( Q ` n ) ) e. MblFn ) |
76 |
74 75
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( P ` n ) oF x. ( Q ` n ) ) e. MblFn ) |
77 |
73 76
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. MblFn ) |
78 |
14
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. dom vol ) |
79 |
|
mbfres |
|- ( ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. MblFn /\ A e. dom vol ) -> ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |` A ) e. MblFn ) |
80 |
77 78 79
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |` A ) e. MblFn ) |
81 |
65 80
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( x e. A |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. MblFn ) |
82 |
|
ovex |
|- ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) e. _V |
83 |
82
|
a1i |
|- ( ( ph /\ ( n e. NN /\ x e. A ) ) -> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) e. _V ) |
84 |
19 20 63 81 83
|
mbflim |
|- ( ph -> ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) e. MblFn ) |
85 |
18 84
|
eqeltrd |
|- ( ph -> ( F oF x. G ) e. MblFn ) |