| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfneg.1 |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 2 |  | mbfneg.2 |  |-  ( ph -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 3 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 4 | 3 1 | dmmptd |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 5 | 2 | dmexd |  |-  ( ph -> dom ( x e. A |-> B ) e. _V ) | 
						
							| 6 | 4 5 | eqeltrrd |  |-  ( ph -> A e. _V ) | 
						
							| 7 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 8 | 7 | a1i |  |-  ( ( ph /\ x e. A ) -> -u 1 e. RR ) | 
						
							| 9 |  | fconstmpt |  |-  ( A X. { -u 1 } ) = ( x e. A |-> -u 1 ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( A X. { -u 1 } ) = ( x e. A |-> -u 1 ) ) | 
						
							| 11 |  | eqidd |  |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) | 
						
							| 12 | 6 8 1 10 11 | offval2 |  |-  ( ph -> ( ( A X. { -u 1 } ) oF x. ( x e. A |-> B ) ) = ( x e. A |-> ( -u 1 x. B ) ) ) | 
						
							| 13 | 2 1 | mbfmptcl |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 14 | 13 | mulm1d |  |-  ( ( ph /\ x e. A ) -> ( -u 1 x. B ) = -u B ) | 
						
							| 15 | 14 | mpteq2dva |  |-  ( ph -> ( x e. A |-> ( -u 1 x. B ) ) = ( x e. A |-> -u B ) ) | 
						
							| 16 | 12 15 | eqtrd |  |-  ( ph -> ( ( A X. { -u 1 } ) oF x. ( x e. A |-> B ) ) = ( x e. A |-> -u B ) ) | 
						
							| 17 | 7 | a1i |  |-  ( ph -> -u 1 e. RR ) | 
						
							| 18 | 13 | fmpttd |  |-  ( ph -> ( x e. A |-> B ) : A --> CC ) | 
						
							| 19 | 2 17 18 | mbfmulc2re |  |-  ( ph -> ( ( A X. { -u 1 } ) oF x. ( x e. A |-> B ) ) e. MblFn ) | 
						
							| 20 | 16 19 | eqeltrrd |  |-  ( ph -> ( x e. A |-> -u B ) e. MblFn ) |