| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfres2.1 |
|- ( ph -> F : A --> RR ) |
| 2 |
|
mbfres2.2 |
|- ( ph -> ( F |` B ) e. MblFn ) |
| 3 |
|
mbfres2.3 |
|- ( ph -> ( F |` C ) e. MblFn ) |
| 4 |
|
mbfres2.4 |
|- ( ph -> ( B u. C ) = A ) |
| 5 |
4
|
reseq2d |
|- ( ph -> ( F |` ( B u. C ) ) = ( F |` A ) ) |
| 6 |
|
ffn |
|- ( F : A --> RR -> F Fn A ) |
| 7 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
| 8 |
1 6 7
|
3syl |
|- ( ph -> ( F |` A ) = F ) |
| 9 |
5 8
|
eqtr2d |
|- ( ph -> F = ( F |` ( B u. C ) ) ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ x e. ran (,) ) -> F = ( F |` ( B u. C ) ) ) |
| 11 |
|
resundi |
|- ( F |` ( B u. C ) ) = ( ( F |` B ) u. ( F |` C ) ) |
| 12 |
10 11
|
eqtrdi |
|- ( ( ph /\ x e. ran (,) ) -> F = ( ( F |` B ) u. ( F |` C ) ) ) |
| 13 |
12
|
cnveqd |
|- ( ( ph /\ x e. ran (,) ) -> `' F = `' ( ( F |` B ) u. ( F |` C ) ) ) |
| 14 |
|
cnvun |
|- `' ( ( F |` B ) u. ( F |` C ) ) = ( `' ( F |` B ) u. `' ( F |` C ) ) |
| 15 |
13 14
|
eqtrdi |
|- ( ( ph /\ x e. ran (,) ) -> `' F = ( `' ( F |` B ) u. `' ( F |` C ) ) ) |
| 16 |
15
|
imaeq1d |
|- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) = ( ( `' ( F |` B ) u. `' ( F |` C ) ) " x ) ) |
| 17 |
|
imaundir |
|- ( ( `' ( F |` B ) u. `' ( F |` C ) ) " x ) = ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) |
| 18 |
16 17
|
eqtrdi |
|- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) = ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) ) |
| 19 |
|
ssun1 |
|- B C_ ( B u. C ) |
| 20 |
19 4
|
sseqtrid |
|- ( ph -> B C_ A ) |
| 21 |
1 20
|
fssresd |
|- ( ph -> ( F |` B ) : B --> RR ) |
| 22 |
|
ismbf |
|- ( ( F |` B ) : B --> RR -> ( ( F |` B ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` B ) " x ) e. dom vol ) ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( ( F |` B ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` B ) " x ) e. dom vol ) ) |
| 24 |
2 23
|
mpbid |
|- ( ph -> A. x e. ran (,) ( `' ( F |` B ) " x ) e. dom vol ) |
| 25 |
24
|
r19.21bi |
|- ( ( ph /\ x e. ran (,) ) -> ( `' ( F |` B ) " x ) e. dom vol ) |
| 26 |
|
ssun2 |
|- C C_ ( B u. C ) |
| 27 |
26 4
|
sseqtrid |
|- ( ph -> C C_ A ) |
| 28 |
1 27
|
fssresd |
|- ( ph -> ( F |` C ) : C --> RR ) |
| 29 |
|
ismbf |
|- ( ( F |` C ) : C --> RR -> ( ( F |` C ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` C ) " x ) e. dom vol ) ) |
| 30 |
28 29
|
syl |
|- ( ph -> ( ( F |` C ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` C ) " x ) e. dom vol ) ) |
| 31 |
3 30
|
mpbid |
|- ( ph -> A. x e. ran (,) ( `' ( F |` C ) " x ) e. dom vol ) |
| 32 |
31
|
r19.21bi |
|- ( ( ph /\ x e. ran (,) ) -> ( `' ( F |` C ) " x ) e. dom vol ) |
| 33 |
|
unmbl |
|- ( ( ( `' ( F |` B ) " x ) e. dom vol /\ ( `' ( F |` C ) " x ) e. dom vol ) -> ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) e. dom vol ) |
| 34 |
25 32 33
|
syl2anc |
|- ( ( ph /\ x e. ran (,) ) -> ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) e. dom vol ) |
| 35 |
18 34
|
eqeltrd |
|- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) e. dom vol ) |
| 36 |
35
|
ralrimiva |
|- ( ph -> A. x e. ran (,) ( `' F " x ) e. dom vol ) |
| 37 |
|
ismbf |
|- ( F : A --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| 38 |
1 37
|
syl |
|- ( ph -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| 39 |
36 38
|
mpbird |
|- ( ph -> F e. MblFn ) |