Step |
Hyp |
Ref |
Expression |
1 |
|
mbfadd.1 |
|- ( ph -> F e. MblFn ) |
2 |
|
mbfadd.2 |
|- ( ph -> G e. MblFn ) |
3 |
|
mbff |
|- ( F e. MblFn -> F : dom F --> CC ) |
4 |
1 3
|
syl |
|- ( ph -> F : dom F --> CC ) |
5 |
|
elinel1 |
|- ( x e. ( dom F i^i dom G ) -> x e. dom F ) |
6 |
|
ffvelrn |
|- ( ( F : dom F --> CC /\ x e. dom F ) -> ( F ` x ) e. CC ) |
7 |
4 5 6
|
syl2an |
|- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( F ` x ) e. CC ) |
8 |
|
mbff |
|- ( G e. MblFn -> G : dom G --> CC ) |
9 |
2 8
|
syl |
|- ( ph -> G : dom G --> CC ) |
10 |
|
elinel2 |
|- ( x e. ( dom F i^i dom G ) -> x e. dom G ) |
11 |
|
ffvelrn |
|- ( ( G : dom G --> CC /\ x e. dom G ) -> ( G ` x ) e. CC ) |
12 |
9 10 11
|
syl2an |
|- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( G ` x ) e. CC ) |
13 |
7 12
|
negsubd |
|- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( ( F ` x ) + -u ( G ` x ) ) = ( ( F ` x ) - ( G ` x ) ) ) |
14 |
13
|
eqcomd |
|- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> ( ( F ` x ) - ( G ` x ) ) = ( ( F ` x ) + -u ( G ` x ) ) ) |
15 |
14
|
mpteq2dva |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) - ( G ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) + -u ( G ` x ) ) ) ) |
16 |
4
|
ffnd |
|- ( ph -> F Fn dom F ) |
17 |
9
|
ffnd |
|- ( ph -> G Fn dom G ) |
18 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
19 |
1 18
|
syl |
|- ( ph -> dom F e. dom vol ) |
20 |
|
mbfdm |
|- ( G e. MblFn -> dom G e. dom vol ) |
21 |
2 20
|
syl |
|- ( ph -> dom G e. dom vol ) |
22 |
|
eqid |
|- ( dom F i^i dom G ) = ( dom F i^i dom G ) |
23 |
|
eqidd |
|- ( ( ph /\ x e. dom F ) -> ( F ` x ) = ( F ` x ) ) |
24 |
|
eqidd |
|- ( ( ph /\ x e. dom G ) -> ( G ` x ) = ( G ` x ) ) |
25 |
16 17 19 21 22 23 24
|
offval |
|- ( ph -> ( F oF - G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) - ( G ` x ) ) ) ) |
26 |
|
inmbl |
|- ( ( dom F e. dom vol /\ dom G e. dom vol ) -> ( dom F i^i dom G ) e. dom vol ) |
27 |
19 21 26
|
syl2anc |
|- ( ph -> ( dom F i^i dom G ) e. dom vol ) |
28 |
12
|
negcld |
|- ( ( ph /\ x e. ( dom F i^i dom G ) ) -> -u ( G ` x ) e. CC ) |
29 |
|
eqidd |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) = ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) ) |
30 |
|
eqidd |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) = ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) |
31 |
27 7 28 29 30
|
offval2 |
|- ( ph -> ( ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) oF + ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) + -u ( G ` x ) ) ) ) |
32 |
15 25 31
|
3eqtr4d |
|- ( ph -> ( F oF - G ) = ( ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) oF + ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) ) |
33 |
|
inss1 |
|- ( dom F i^i dom G ) C_ dom F |
34 |
|
resmpt |
|- ( ( dom F i^i dom G ) C_ dom F -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) ) |
35 |
33 34
|
mp1i |
|- ( ph -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) ) |
36 |
4
|
feqmptd |
|- ( ph -> F = ( x e. dom F |-> ( F ` x ) ) ) |
37 |
36 1
|
eqeltrrd |
|- ( ph -> ( x e. dom F |-> ( F ` x ) ) e. MblFn ) |
38 |
|
mbfres |
|- ( ( ( x e. dom F |-> ( F ` x ) ) e. MblFn /\ ( dom F i^i dom G ) e. dom vol ) -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
39 |
37 27 38
|
syl2anc |
|- ( ph -> ( ( x e. dom F |-> ( F ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
40 |
35 39
|
eqeltrrd |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) e. MblFn ) |
41 |
|
inss2 |
|- ( dom F i^i dom G ) C_ dom G |
42 |
|
resmpt |
|- ( ( dom F i^i dom G ) C_ dom G -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( G ` x ) ) ) |
43 |
41 42
|
mp1i |
|- ( ph -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) = ( x e. ( dom F i^i dom G ) |-> ( G ` x ) ) ) |
44 |
9
|
feqmptd |
|- ( ph -> G = ( x e. dom G |-> ( G ` x ) ) ) |
45 |
44 2
|
eqeltrrd |
|- ( ph -> ( x e. dom G |-> ( G ` x ) ) e. MblFn ) |
46 |
|
mbfres |
|- ( ( ( x e. dom G |-> ( G ` x ) ) e. MblFn /\ ( dom F i^i dom G ) e. dom vol ) -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
47 |
45 27 46
|
syl2anc |
|- ( ph -> ( ( x e. dom G |-> ( G ` x ) ) |` ( dom F i^i dom G ) ) e. MblFn ) |
48 |
43 47
|
eqeltrrd |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( G ` x ) ) e. MblFn ) |
49 |
12 48
|
mbfneg |
|- ( ph -> ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) e. MblFn ) |
50 |
40 49
|
mbfadd |
|- ( ph -> ( ( x e. ( dom F i^i dom G ) |-> ( F ` x ) ) oF + ( x e. ( dom F i^i dom G ) |-> -u ( G ` x ) ) ) e. MblFn ) |
51 |
32 50
|
eqeltrd |
|- ( ph -> ( F oF - G ) e. MblFn ) |