Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv0
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv0.1
|- ( ph <-> F. )
mdandyv0.2
|- ( ps <-> T. )
mdandyv0.3
|- ( ch <-> F. )
mdandyv0.4
|- ( th <-> F. )
mdandyv0.5
|- ( ta <-> F. )
mdandyv0.6
|- ( et <-> F. )
Assertion
mdandyv0
|- ( ( ( ( ch <-> ph ) /\ ( th <-> ph ) ) /\ ( ta <-> ph ) ) /\ ( et <-> ph ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyv0.1
|- ( ph <-> F. )
2
mdandyv0.2
|- ( ps <-> T. )
3
mdandyv0.3
|- ( ch <-> F. )
4
mdandyv0.4
|- ( th <-> F. )
5
mdandyv0.5
|- ( ta <-> F. )
6
mdandyv0.6
|- ( et <-> F. )
7
3 1
bothfbothsame
|- ( ch <-> ph )
8
4 1
bothfbothsame
|- ( th <-> ph )
9
7 8
pm3.2i
|- ( ( ch <-> ph ) /\ ( th <-> ph ) )
10
5 1
bothfbothsame
|- ( ta <-> ph )
11
9 10
pm3.2i
|- ( ( ( ch <-> ph ) /\ ( th <-> ph ) ) /\ ( ta <-> ph ) )
12
6 1
bothfbothsame
|- ( et <-> ph )
13
11 12
pm3.2i
|- ( ( ( ( ch <-> ph ) /\ ( th <-> ph ) ) /\ ( ta <-> ph ) ) /\ ( et <-> ph ) )