Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv10
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv10.1
|- ( ph <-> F. )
mdandyv10.2
|- ( ps <-> T. )
mdandyv10.3
|- ( ch <-> F. )
mdandyv10.4
|- ( th <-> T. )
mdandyv10.5
|- ( ta <-> F. )
mdandyv10.6
|- ( et <-> T. )
Assertion
mdandyv10
|- ( ( ( ( ch <-> ph ) /\ ( th <-> ps ) ) /\ ( ta <-> ph ) ) /\ ( et <-> ps ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyv10.1
|- ( ph <-> F. )
2
mdandyv10.2
|- ( ps <-> T. )
3
mdandyv10.3
|- ( ch <-> F. )
4
mdandyv10.4
|- ( th <-> T. )
5
mdandyv10.5
|- ( ta <-> F. )
6
mdandyv10.6
|- ( et <-> T. )
7
3 1
bothfbothsame
|- ( ch <-> ph )
8
4 2
bothtbothsame
|- ( th <-> ps )
9
7 8
pm3.2i
|- ( ( ch <-> ph ) /\ ( th <-> ps ) )
10
5 1
bothfbothsame
|- ( ta <-> ph )
11
9 10
pm3.2i
|- ( ( ( ch <-> ph ) /\ ( th <-> ps ) ) /\ ( ta <-> ph ) )
12
6 2
bothtbothsame
|- ( et <-> ps )
13
11 12
pm3.2i
|- ( ( ( ( ch <-> ph ) /\ ( th <-> ps ) ) /\ ( ta <-> ph ) ) /\ ( et <-> ps ) )