Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr1
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr1.1
|- ( ph <-> ze )
mdandyvr1.2
|- ( ps <-> si )
mdandyvr1.3
|- ( ch <-> ps )
mdandyvr1.4
|- ( th <-> ph )
mdandyvr1.5
|- ( ta <-> ph )
mdandyvr1.6
|- ( et <-> ph )
Assertion
mdandyvr1
|- ( ( ( ( ch <-> si ) /\ ( th <-> ze ) ) /\ ( ta <-> ze ) ) /\ ( et <-> ze ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvr1.1
|- ( ph <-> ze )
2
mdandyvr1.2
|- ( ps <-> si )
3
mdandyvr1.3
|- ( ch <-> ps )
4
mdandyvr1.4
|- ( th <-> ph )
5
mdandyvr1.5
|- ( ta <-> ph )
6
mdandyvr1.6
|- ( et <-> ph )
7
3 2
bitri
|- ( ch <-> si )
8
4 1
bitri
|- ( th <-> ze )
9
7 8
pm3.2i
|- ( ( ch <-> si ) /\ ( th <-> ze ) )
10
5 1
bitri
|- ( ta <-> ze )
11
9 10
pm3.2i
|- ( ( ( ch <-> si ) /\ ( th <-> ze ) ) /\ ( ta <-> ze ) )
12
6 1
bitri
|- ( et <-> ze )
13
11 12
pm3.2i
|- ( ( ( ( ch <-> si ) /\ ( th <-> ze ) ) /\ ( ta <-> ze ) ) /\ ( et <-> ze ) )