Metamath Proof Explorer


Theorem mdandyvr11

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr11.1
|- ( ph <-> ze )
mdandyvr11.2
|- ( ps <-> si )
mdandyvr11.3
|- ( ch <-> ps )
mdandyvr11.4
|- ( th <-> ps )
mdandyvr11.5
|- ( ta <-> ph )
mdandyvr11.6
|- ( et <-> ps )
Assertion mdandyvr11
|- ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> ze ) ) /\ ( et <-> si ) )

Proof

Step Hyp Ref Expression
1 mdandyvr11.1
 |-  ( ph <-> ze )
2 mdandyvr11.2
 |-  ( ps <-> si )
3 mdandyvr11.3
 |-  ( ch <-> ps )
4 mdandyvr11.4
 |-  ( th <-> ps )
5 mdandyvr11.5
 |-  ( ta <-> ph )
6 mdandyvr11.6
 |-  ( et <-> ps )
7 2 1 3 4 5 6 mdandyvr4
 |-  ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> ze ) ) /\ ( et <-> si ) )