Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr11
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr11.1
|- ( ph <-> ze )
mdandyvr11.2
|- ( ps <-> si )
mdandyvr11.3
|- ( ch <-> ps )
mdandyvr11.4
|- ( th <-> ps )
mdandyvr11.5
|- ( ta <-> ph )
mdandyvr11.6
|- ( et <-> ps )
Assertion
mdandyvr11
|- ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> ze ) ) /\ ( et <-> si ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvr11.1
|- ( ph <-> ze )
2
mdandyvr11.2
|- ( ps <-> si )
3
mdandyvr11.3
|- ( ch <-> ps )
4
mdandyvr11.4
|- ( th <-> ps )
5
mdandyvr11.5
|- ( ta <-> ph )
6
mdandyvr11.6
|- ( et <-> ps )
7
2 1 3 4 5 6
mdandyvr4
|- ( ( ( ( ch <-> si ) /\ ( th <-> si ) ) /\ ( ta <-> ze ) ) /\ ( et <-> si ) )