Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr12
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr12.1
|- ( ph <-> ze )
mdandyvr12.2
|- ( ps <-> si )
mdandyvr12.3
|- ( ch <-> ph )
mdandyvr12.4
|- ( th <-> ph )
mdandyvr12.5
|- ( ta <-> ps )
mdandyvr12.6
|- ( et <-> ps )
Assertion
mdandyvr12
|- ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> si ) ) /\ ( et <-> si ) )
Proof
Step
Hyp
Ref
Expression
1
mdandyvr12.1
|- ( ph <-> ze )
2
mdandyvr12.2
|- ( ps <-> si )
3
mdandyvr12.3
|- ( ch <-> ph )
4
mdandyvr12.4
|- ( th <-> ph )
5
mdandyvr12.5
|- ( ta <-> ps )
6
mdandyvr12.6
|- ( et <-> ps )
7
2 1 3 4 5 6
mdandyvr3
|- ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> si ) ) /\ ( et <-> si ) )