Metamath Proof Explorer


Theorem mdandyvr12

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr12.1
|- ( ph <-> ze )
mdandyvr12.2
|- ( ps <-> si )
mdandyvr12.3
|- ( ch <-> ph )
mdandyvr12.4
|- ( th <-> ph )
mdandyvr12.5
|- ( ta <-> ps )
mdandyvr12.6
|- ( et <-> ps )
Assertion mdandyvr12
|- ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> si ) ) /\ ( et <-> si ) )

Proof

Step Hyp Ref Expression
1 mdandyvr12.1
 |-  ( ph <-> ze )
2 mdandyvr12.2
 |-  ( ps <-> si )
3 mdandyvr12.3
 |-  ( ch <-> ph )
4 mdandyvr12.4
 |-  ( th <-> ph )
5 mdandyvr12.5
 |-  ( ta <-> ps )
6 mdandyvr12.6
 |-  ( et <-> ps )
7 2 1 3 4 5 6 mdandyvr3
 |-  ( ( ( ( ch <-> ze ) /\ ( th <-> ze ) ) /\ ( ta <-> si ) ) /\ ( et <-> si ) )